Drug-induced loss of imprinting revealed using bioluminescent reporters of Cdkn1c

  • Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Z. & Shilatifard, A. Epigenetic modifications of histones in cancer. Genome Biol. 20, 1–16 (2019).

    Article 

    Google Scholar
     

  • Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

  • Nagano, T. & Fraser, P. Emerging similarities in epigenetic gene silencing by long noncoding RNAs. Mamm. Genome 20, 557–562 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagano, T. et al. The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322, 1717–1720 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Statello, L., Guo, C. J., Chen, L. L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitehead, J., Pandey, G. K. & Kanduri, C. Regulation of the mammalian epigenome by long noncoding RNAs. Biochim. Biophys. Acta 1790, 936–947 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oudelaar, A. M. & Higgs, D. R. The relationship between genome structure and function. Nat. Rev. Genet. 22, 154–168 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Misteli, T. The self-organizing genome: Principles of genome architecture and function. Cell 183, 28–45 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhind, N. & Gilbert, D. M. DNA replication timing. Cold Spring Harb. Perspect. Biol. 5, a010132 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, K. N. et al. Replication timing maintains the global epigenetic state in human cells. Science 372, 371–378 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Steensel, B. & Belmont, A. S. Lamina-associated domains: Links with chromosome architecture, heterochromatin, and gene repression. Cell 169, 780–791 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batut, P. J. et al. Genome organization controls transcriptional dynamics during development. Science 375, 566–570 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barlow, D. P. & Bartolomei, M. S. Genomic imprinting in mammals. Cold Spring Harb. Perspect. Biol. 6, a018382 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferguson-Smith, A. C. Genomic imprinting: The emergence of an epigenetic paradigm. Nat. Rev. Genet. 12, 565–575 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tucci, V. et al. Genomic imprinting and physiological processes in mammals. Cell 176, 952–965 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barlow, D. P. Genomic imprinting: A mammalian epigenetic discovery model. Annu. Rev. Genet. 45, 379–403 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ainscough, J. F. X., John, R. M. & Azim Surani, M. Mechanism of imprinting on mouse distal chromosome 7. Genet. Res. 72, 237–245 (1998).

  • Paulsen, M. et al. Syntenic organization of the mouse distal chromosome 7 imprinting cluster and the Beckwith-Wiedemann syndrome region in chromosome 11p15.5. Hum. Mol. Genet. 7, 1149–1159 (1998).

  • Fitzpatrick, G. V, Soloway, P. D. & Higgins, M. J. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet. 32, 426–31 (2002).

  • Umlauf, D. et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat. Genet. 36, 1296–1300 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhogal, B., Arnaudo, A., Dymkowski, A., Best, A. & Davis, T. L. Methylation at mouse Cdkn1c is acquired during postimplantation development and functions to maintain imprinted expression. Genomics 84, 961–970 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, T., Hagan, J. P., Kozlov, S. V, Stewart, C. L. & Muegge, K. Lsh controls silencing of the imprinted Cdkn1c gene. Development 132, 635–44 (2005).

  • Caspary, T., Cleary, M. A., Baker, C. C., Guan, X. J. & Tilghman, S. M. Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster. Mol. Cell. Biol. 18, 3466–3474 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hatada, I. & Mukai, T. Genomic imprinting of p57KIP2, a cyclin–dependent kinase inhibitor, in mouse. Nat. Genet. 11, 204–206 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, K. & Nakayama, K. Mice lacking a CDK inhibitor, p57Kip2, exhibit skeletal abnormalities and growth retardation. J. Biochem. 127, 73–83 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrews, S. C. et al. Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7. BMC Dev. Biol. 7, 53 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van De Pette, M. et al. Cdkn1c boosts the development of brown adipose tissue in a murine model of silver Russell syndrome. PLOS Genet. 12, e1005916 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, M. H., Reynisdottir, I. & Massague, J. Cloning of p57(KIP2), a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 9, 639–649 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tunster, S. J., Van de Pette, M. & John, R. M. Fetal overgrowth in the Cdkn1c mouse model of Beckwith–Wiedemann syndrome. Dis. Model. Mech. 4, 814–821 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osborn, D. P. S., Li, K., Hinits, Y. & Hughes, S. M. Cdkn1c drives muscle differentiation through a positive feedback loop with Myod. Dev. Biol. 350, 464–475 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, P. et al. Altered cell differentiation and proliferation in mice lacking p57(KIP2) indicates a role in Beckwith–Wiedemann syndrome. Nature 387, 151–158 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eggermann, T. et al. CDKN1C mutations: Two sides of the same coin. Trends Mol. Med. 20, 614–622 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soejima, H. & Higashimoto, K. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders. J. Hum. Genet. 58, 402–409 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higashimoto, K., Soejima, H., Saito, T., Okumura, K. & Mukai, T. Imprinting disruption of the CDKN1C/KCNQ1OT1 domain: the molecular mechanisms causing Beckwith–Wiedemann syndrome and cancer. Cytogenet. Genome Res. 113, 306–312 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diaz-Meyer, N. et al. Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith-Wiedemann syndrome. J. Med. Genet. 40, 797–801 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mancini-DiNardo, D., Steele, S. J. S., Ingram, R. S. & Tilghman, S. M. A differentially methylated region within the gene Kcnq1 functions as an imprinted promoter and silencer. Hum. Mol. Genet. 12, 283–294 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Engemann, S. et al. Sequence and functional comparison in the Beckwith-Wiedemann region: Implications for a novel imprinting centre and extended imprinting. Hum. Mol. Genet. 9, 2691–2706 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yatsuki, H. et al. Domain regulation of imprinting cluster in Kip2/Lit1 subdomain on mouse chromosome 7F4/F5: large-scale DNA methylation analysis reveals that DMR-Lit1 is a putative imprinting control region. Genome Res. 12, 1860–1870 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beatty, L., Weksberg, R. & Sadowski, P. D. Detailed analysis of the methylation patterns of the KvDMR1 imprinting control region of human chromosome 11. Genomics 87, 46–56 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • John, R. M. & Lefebvre, L. Developmental regulation of somatic imprints. Differentiation 81, 270–280 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mancini-DiNardo, D., Steele, S. J. S., Levorse, J. M., Ingram, R. S. & Tilghman, S. M. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 20, 1268–1282 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thakur, N. et al. An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol. Cell. Biol. 24, 7855–7862 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, M. P. et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc. Natl. Acad. Sci. U.S.A. 96, 5203–5208 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammad, F. et al. Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol. Cell. Biol. 28, 3713–3728 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammad, F., Mondal, T., Guseva, N., Pandey, G. K. & Kanduri, C. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137, 2493–2499 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32, 232–246 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, P. et al. Chromosome-wide analysis of parental allele-specific chromatin and DNA methylation. Mol. Cell. Biol. 31, 1757–1770 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, A. et al. Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo. Development 133, 4203–4210 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, A. et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat. Genet. 36, 1291–1295 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, J.-Y., Fitzpatrick, G. V. & Higgins, M. J. Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO J. 27, 168–178 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, P. et al. Coordinated allele-specific histone acetylation at the differentially methylated regions of imprinted genes. Nucleic Acids Res. 38, 7974–7990 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van de Pette, M. et al. Visualizing changes in Cdkn1c expression links early-life adversity to imprint mis-regulation in adults. Cell Rep. 18, 1090–1099 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van de Pette, M. et al. Epigenetic changes induced by in utero dietary challenge result in phenotypic variability in successive generations of mice. Nat. Commun. 13, 1–14 (2022).

    ADS 

    Google Scholar
     

  • Mezzanotte, L., van ‘t Root, M., Karatas, H., Goun, E. A. & Löwik, C. W. G. M. In vivo molecular bioluminescence imaging: New tools and applications. Trends Biotechnol. 35, 640–652 (2017).

  • Ganesan, A., Arimondo, P. B., Rots, M. G., Jeronimo, C. & Berdasco, M. The timeline of epigenetic drug discovery: From reality to dreams. Clin. Epigenet. 11, 1–17 (2019).

    Article 

    Google Scholar
     

  • Montalvo-Casimiro, M. et al. Epidrug repurposing: Discovering new faces of old acquaintances in cancer therapy. Front. Oncol. 10, 2461 (2020).

    Article 

    Google Scholar
     

  • Christman, J. K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483–5495 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vigushin, D. M. et al. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin. Cancer Res. 7, 971–976 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Lobera, M. et al. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat. Chem. Biol. 9, 319–325 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X. et al. CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS ONE 4, e5011 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Kharroubi, A., Piras, G. & Stewart, C. L. DNA demethylation reactivates a subset of imprinted genes in uniparental mouse embryonic fibroblasts. J. Biol. Chem. 276, 8674–8680 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Algar, E. M. et al. Imprinted CDKN1C is a tumor suppressor in rhabdoid tumor and activated by restoration of SMARCB1 and histone deacetylase inhibitors. PLoS ONE 4, e4482 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurvich, N., Tsygankova, O. M., Meinkoth, J. L. & Klein, P. S. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 64, 1079–1086 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Furumai, R. et al. FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 62, 4916–4921 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Seal, J. et al. Identification of a novel series of BET family bromodomain inhibitors: Binding mode and profile of I-BET151 (GSK1210151A). Bioorganic Med. Chem. Lett. 22, 2968–2972 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Mirguet, O. et al. From ApoA1 upregulation to BET family bromodomain inhibition: Discovery of I-BET151. Bioorganic Med. Chem. Lett. 22, 2963–2967 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gosmini, R. et al. The discovery of I-BET726 (GSK1324726A), a potent tetrahydroquinoline ApoA1 up-regulator and selective BET bromodomain inhibitor. J. Med. Chem. 57, 8111–8131 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konze, K. D. et al. An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1. ACS Chem. Biol. 8, 1324–1334 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Béguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verma, S. K. et al. Identification of potent, selective, cell-Active inhibitors of the histone lysine methyltransferase EZH2. ACS Med. Chem. Lett. 3, 1091–1096 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404–408 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franzen, J. et al. DNA methylation changes during long-term in vitro cell culture are caused by epigenetic drift. Commun. Biol. 4, 1–12 (2021).

    Article 

    Google Scholar
     

  • Bork, S. et al. DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9, 54–63 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mager, J., Montgomery, N. D., de Villena, F.P.-M. & Magnuson, T. Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat. Genet. 33, 502–507 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andergassen, D., Smith, Z. D., Kretzmer, H., Rinn, J. L. & Meissner, A. Diverse epigenetic mechanisms maintain parental imprints within the embryonic and extraembryonic lineages. Dev. Cell 56, 2995-3005.e4 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Terranova, R. et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev. Cell 15, 668–679 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagschal, A. et al. G9a histone methyltransferase contributes to imprinting in the mouse placenta. Mol. Cell. Biol. 28, 1104–1113 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hölscher, A. S., Schulz, W. A., Pinkerneil, M., Niegisch, G. & Hoffmann, M. J. Combined inhibition of BET proteins and class I HDACs synergistically induces apoptosis in urothelial carcinoma cell lines. Clin. Epigenetics 10, 1 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheung, K. L., Kim, C. & Zhou, M. M. The functions of BET proteins in gene transcription of biology and diseases. Front. Mol. Biosci. 8, 787 (2021).

    Article 

    Google Scholar
     

  • Bhadury, J. et al. BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma. Proc. Natl. Acad. Sci. U. S. A. 111, E2721–E2730 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazur, P. K. et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat. Med. 21, 1163–1171 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wood, M. D. et al. Autonomous silencing of the imprinted Cdkn1c gene in stem cells. Epigenetics 5, 214–221 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diaz-Meyer, N., Yang, Y., Sait, S. N., Maher, E. R. & Higgins, M. J. Alternative mechanisms associated with silencing of CDKN1C in Beckwith-Wiedemann syndrome. J. Med. Genet. 42, 648–655 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, W. Y., Yuan, L., Feng, L., Hensle, T. & Tycko, B. Chromosome 11p15.5 regional imprinting: Comparative analysis of KIP2 and H19 in human tissues and Wilms’ tumors. Hum. Mol. Genet. 5, 1101–1108 (1996).

  • Woodfine, K., Huddleston, J. E. & Murrell, A. Quantitative analysis of DNA methylation at all human imprinted regions reveals preservation of epigenetic stability in adult somatic tissue. Epigenet. Chromatin 4, 1–13 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Heinemann, B. et al. Inhibition of demethylases by GSK-J1/J4. Nature 514, E1–E2 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hofstetter, C. et al. Inhibition of KDM6 activity during murine ESC differentiation induces DNA damage. J. Cell Sci. 129, 788–803 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Chu, X. et al. GSK-J4 induces cell cycle arrest and apoptosis via ER stress and the synergism between GSK-J4 and decitabine in acute myeloid leukemia KG-1a cells. Cancer Cell Int. 20, 1–13 (2020).

    Article 

    Google Scholar
     

  • Xu, J. Preparation, Culture, and Immortalization of Mouse Embryonic Fibroblasts. in Current Protocols in Molecular Biology Chapter 28, Unit 28.1 (2005).

  • Stirling, D. R. et al. Cell Profiler 4: Improvements in speed, utility and usability. BMC Bioinf 22, 1–11 (2021).

    Article 

    Google Scholar
     

  • Clapcote, S. J. & Roder, J. C. Simplex PCR assay for sex determination in mice. Biotechniques 38, 702–706 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Read more here: Source link