Identification of two insecticide resistance markers in Ethiopian Anopheles stephensi mosquitoes using a multiplex amplicon sequencing assay

  • Faulde, M. K., Rueda, L. M. & Khaireh, B. A. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti Horn of Africa. Acta Trop. 139, 39–43 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • R, A. et al. Confirmation of the presence of Anopheles stephensi among a conflict-affected host community in Aden City, Yemen. (2022) doi:doi.org/10.21203/RS.3.RS-1977582/V1.

  • Balkew, M. et al. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018–2020. Malar. J. 20, 263 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. Malaria Threat Map: Invasive Vector Species. WHO (2021).

  • Malaria Threat Map. apps.who.int/malaria/maps/threats/?theme=invasive&mapType=invasive%3A0&bounds=%5B%5B-23.293603560044943%2C-18.12866125808999%5D%2C%5B65.36581083765986%2C32.29279894563096%5D%5D&insecticideClass=PYRETHROIDS&insecticideTypes=&assayTypes=MOLECULAR_ASSAY%2CBIOCHEMICAL_ASSAY%2CSYNERGIST-INSECTICIDE_BIOASSAY&synergistTypes=&species=&vectorSpecies=&surveyTypes=&deletionType=HRP2_PROPORTION_DELETION&plasmodiumSpecies=P._FALCIPARUM&drug=DRUG_AL&mmType=1&excludeLowerPatients=false&excludeLowerSamples=false&endemicity=false&countryMode=false&storyMode=false&storyModeStep=0&filterOpen=true&filtersMode=filters&years=1985%2C2022.

  • Ahmed, A., Khogali, R., Elnour, M. A. B., Nakao, R. & Salim, B. Emergence of the invasive malaria vector Anopheles stephensi in Khartoum State, Central Sudan. Parasit. Vectors 14, (2021).

  • Ahmed, A. et al. Invasive malaria vector anopheles stephensi mosquitoes in Sudan, 2016–2018. Emerg. Infect. Dis. 27, 2952–2954 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Orgnization (WHO). WHO initiative to stop the spread of Anopheles stephensi in Africa.

  • Tadesse, F. G. et al. Anopheles stephensi Mosquitoes as Vectors of Plasmodium vivax and falciparum, Horn of Africa, 2019. Emerg. Infect. Dis. 27, 603–607 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seyfarth, M., Khaireh, B. A., Abdi, A. A., Bouh, S. M. & Faulde, M. K. Five years following first detection of Anopheles stephensi (Diptera: Culicidae) in Djibouti, Horn of Africa: Populations established—malaria emerging. Parasitol. Res. 118, 725–732 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Messenger, L. A. et al. Insecticide resistance in Anopheles arabiensis from Ethiopia (2012–2016): A nationwide study for insecticide resistance monitoring. Malar. J. 16, 469 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinka, M. E. et al. A new malaria vector in Africa: Predicting the expansion range of “Anopheles stephensi” and identifying the urban populations at risk. Proc. Natl. Acad. Sci. 117, 24900–24908 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surendran, S. N. et al. Anthropogenic factors driving recent range expansion of the malaria vector anopheles stephensi. Frontiers in Public Health vol. 7 (2019).

  • Surendran, S. N. et al. Anthropogenic factors driving recent range expansion of the malaria vector anopheles stephensi. Frontiers in Public Health (2019).

  • Hancock, P. A. et al. Associated patterns of insecticide resistance in field populations of malaria vectors across Africa. Proc. Natl. Acad. Sci. U. S. A. 115, 5938–5943 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moyes, C. L. et al. Evaluating insecticide resistance across African districts to aid malaria control decisions. Proc. Natl. Acad. Sci. U. S. A. 117, 22042–22050 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Organização Mundial da Saúde. Guidelines for Malaria Vector Control. Guidelines for Malaria Vector Control (2019).

  • Martinez-Torres, D. et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae ss. Insect Mol. Biol. 7, 179–184 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riveron, J. M. et al. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biol. 15, R27 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soltani, A. et al. Resistance mechanisms of anopheles stephensi (Diptera: Culicidae) to temephos. J. Arthropod-Borne Dis. 9, 71–83 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibrahim, S. S., Ndula, M., Riveron, J. M., Irving, H. & Wondji, C. S. The P450 CYP6Z1 confers carbamate/pyrethroid cross-resistance in a major African malaria vector beside a novel carbamate-insensitive N485I acetylcholinesterase-1 mutation. Mol. Ecol. 25, 3436–3452 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, A. P. B., Santos, J. M. M. & Martins, A. J. Mutations in the voltage-gated sodium channel gene of anophelines and their association with resistance to pyrethroids – A review. Parasit. Vectors 7, (2014).

  • Du, W. et al. Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol. Biol. 14, 179–183 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ffrench-Constant, R. H., Anthony, N., Aronstein, K., Rocheleau, T. & Stilwell, G. Cyclodiene insecticide resistance: From molecular to population genetics. Annu. Rev. Entomol. 45, 449–466 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wondji, C. S. et al. Identification and distribution of a GABA receptor mutation conferring dieldrin resistance in the malaria vector Anopheles funestus in Africa. Insect Biochem. Mol. Biol. 41, 484–491 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor-Wells, J., Brooke, B. D., Bermudez, I. & Jones, A. K. The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl GABA receptor. J. Neurochem. 135, 705–713 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. U. S. A. 113, 9268–9273 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yahouédo, G. A. et al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci. Rep. 71(7), 1–10 (2017).


    Google Scholar
     

  • Pelloquin, B. et al. Overabundance of asaia and serratia bacteria is associated with deltamethrin insecticide susceptibility in anopheles coluzzii from agboville, Côte d’Ivoire. Microbiol. Spectr. 9, (2021).

  • Omoke, D. et al. Western Kenyan Anopheles gambiae showing intense permethrin resistance harbour distinct microbiota. Malar. J. 20, (2021).

  • Singh, O. P., Dykes, C. L., Lather, M., Agrawal, O. P. & Adak, T. Knockdown resistance (kdr)-like mutations in the voltage-gated sodium channel of a malaria vector Anopheles stephensi and PCR assays for their detection. Malar. J. 10, 59 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dykes, C. L. et al. Knockdown resistance (kdr) mutations in Indian anopheles stephensi (Diptera: Culicidae) populations. J. Med. Entomol. 53, 315–320 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yared, S. et al. Insecticide resistance in Anopheles stephensi in Somali Region, eastern Ethiopia. Malar. J. 19, (2020).

  • Samake, J. N. et al. Detection and population genetic analysis of kdr L1014F variant in eastern Ethiopian Anopheles stephensi. Infect. Genet. Evol. 99, 105235 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carter, T. E. et al. Analysis of the Knockdown Resistance Locus (kdr) in Anopheles stephensi, An. arabiensis, and Culex pipiens s.l. for Insight Into the Evolution of Target-site Pyrethroid Resistance in Eastern Ethiopia. Am. J. Trop. Med. Hyg. 106, 632–638 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nag, S. et al. High throughput resistance profiling of Plasmodium falciparum infections based on custom dual indexing and Illumina next generation sequencing-technology. Sci. Rep. 7, 2398 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makunin, A. et al. A targeted amplicon sequencing panel to simultaneously identify mosquito species and Plasmodium presence across the entire Anopheles genus. Mol. Ecol. Resour. 22, 28–44 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campos, M. et al. High-throughput barcoding method for the genetic surveillance of insecticide resistance and species identification in Anopheles gambiae complex malaria vectors. Sci. Rep. 12, (2022).

  • Yang, C., Huang, Z., Li, M., Feng, X. & Qiu, X. RDL mutations predict multiple insecticide resistance in Anopheles sinensis in Guangxi, China. Malar. J. 16, (2017).

  • Carter, T. E. et al. Genetic diversity of Anopheles stephensi in Ethiopia provides insight into patterns of spread. Parasit. Vectors 14, 1–12 (2021).

    Article 

    Google Scholar
     

  • Nkya, T. E., Akhouayri, I., Kisinza, W. & David, J. P. Impact of environment on mosquito response to pyrethroid insecticides: Facts, evidences and prospects. Insect Biochem. Mol. Biol. 43, 407–416 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nat. 2015 5267572 526, 207–211 (2015).

  • Khan, J. et al. Identification of a biological form in the Anopheles stephensi laboratory colony using the odorant-binding protein 1 intron I sequence. PLoS ONE 17, e0263836 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enayati, A. A., Vatandoost, H., Ladonni, H., Townson, H. & Hemingway, J. Molecular evidence for a kdr-like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi. Med. Vet. Entomol. 17, 138–144 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiwari, S., Ghosh, S. K., Ojha, V. P., Dash, A. P. & Raghavendra, K. Reduced susceptibility to selected synthetic pyrethroids in urban malaria vector Anopheles stephensi: A case study in Mangalore city, South India. Malar. J. 9, (2010).

  • Tungu, P. K. et al. Large-scale (Phase III) evaluation of broflanilide 50WP (VECTRONTM T500) for indoor residual spraying for malaria vector control in Northeast Tanzania: study protocol for a two-arm, non-inferiority, cluster-randomised community trial. BMC Infect. Dis. 22, (2022).

  • Portwood, N. M. et al. Multi-centre discriminating concentration determination of broflanilide and potential for cross- resistance to other public health insecticides in Anopheles vector populations. doi.org/10.21203/RS.3.RS-2022718/V1 (2022).

    Article 

    Google Scholar
     

  • Liu, N., Feng, X. & Qiu, X. RDL mutations in Guangxi Anopheles sinensis populations along the China-Vietnam border: distribution frequency and evolutionary origin of A296S resistance allele. Malar. J. 19, 23 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grau-Bové, X. et al. Evolution of the insecticide target Rdl in African Anopheles is driven by interspecific and interkaryotypic introgression. Mol. Biol. Evol. 37, 2900–2917 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surendran, S. N. et al. Genotype and biotype of invasive Anopheles stephensi in Mannar Island of Sri Lanka. Parasit. Vectors 11, 3 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, S., Sharma, G., Das, M. K., Pande, V. & Singh, O. P. Intragenomic sequence variations in the second internal transcribed spacer (ITS2) ribosomal DNA of the malaria vector Anopheles stephensi. PLoS ONE 16, e0253173 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alam, M. T., Bora, H., Das, M. K. & Sharma, Y. D. The type and mysorensis forms of the Anopheles stephensi (Diptera: Culicidae) in India exhibit identical ribosomal DNA ITS2 and domain-3 sequences. Parasitol. Res. 103, 75 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Carter, T. E. et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 188, 180–186 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • WHO initiative to stop the spread of Anopheles stephensi in Africa. www.who.int/publications/i/item/WHO-UCN-GMP-2022.06.

  • Ochomo, E. O. et al. Molecular surveillance leads to the first detection of Anopheles stephensi in Kenya. doi.org/10.21203/RS.3.RS-2498485/V1 (2023).

    Article 

    Google Scholar
     

  • Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic Acids Res. 40, (2012).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinforma. Oxf. Engl. 30, 2114–2120 (2014).

    Article 
    CAS 

    Google Scholar
     

  • H.Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. (2013).

  • tseemann/samclip: Filter SAM file for soft and hard clipped alignments. github.com/tseemann/samclip.

  • Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. doi.org/10.48550/arxiv.1207.3907 (2012).

    Article 

    Google Scholar
     

  • Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. 201178 Preprint at doi.org/10.1101/201178 (2018).

  • Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakraborty, M. et al. Hidden genomic features of an invasive malaria vector, Anopheles stephensi, revealed by a chromosome-level genome assembly. BMC Biol. 19, 28 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Read more here: Source link