RPA/CRISPR-cas12a as a specific, sensitive and rapid method for diagnosing Ehrlichia canis and Anaplasma platys in dogs in Thailand

  • Almazán C, González-Álvarez VH, Fernández de Mera IG, Cabezas-Cruz A, Rodríguez-Martínez R, De la Fuente J (2016) Molecular identification and characterization of Anaplasma platys and Ehrlichia canis in dogs in Mexico. Ticks Tick Borne Dis 7:276–283. doi.org/10.1016/j.ttbdis.2015.11.002

    Article 
    PubMed 

    Google Scholar
     

  • Aman R, Mahas A, Marsic T, Hassan N, Mahfouz MM (2020) Efficient, rapid, and sensitive detection of plant RNA viruses with one-pot RT-RPA–CRISPR/Cas12a assay. Front Microbiol 11:610872. doi.org/10.3389/fmicb.2020.610872

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29:S49–S52

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bereczky S, Mårtensson A, Gil JP, Färnert A (2005) Short report: rapid DNA extraction from archive blood spots on filter paper for genotyping of Plasmodium falciparum. Am J Trop Med Hyg 72:249–251. doi.org/10.4269/ajtmh.2005.72.249

    Article 
    PubMed 

    Google Scholar
     

  • Buddhachat K, Meerod T, Pradit W, Siengdee P, Chomdej S, Nganvongpanit K (2020) Simultaneous differential detection of canine blood parasites: multiplex high-resolution melting analysis (mHRM). Ticks Tick Borne Dis 11:101370. doi.org/10.1016/j.ttbdis.2020.101370

    Article 
    PubMed 

    Google Scholar
     

  • Buddhachat K, Paenkaew S, Sripairoj N, Gupta YM, Pradit W, Chomdej S (2021) Bar-cas12a, a novel and rapid method for plant species authentication in case of Phyllanthus amarus Schumach & Thonn. Sci Rep 11:20888. doi.org/10.1038/s41598-021-00006-1

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buddhachat K, Sripairoj N, Ritbamrung O, Inthima P, Ratanasut K, Boonsrangsom T, Rungrat T, Pongcharoen P, Sujipuli K (2022) RPA-assisted cas12a system for detecting pathogenic Xanthomonas oryzae, a causative agent for bacterial leaf blight disease in rice. Rice Sci 29:340–352. doi.org/10.1016/j.rsci.2021.11.005

    Article 

    Google Scholar
     

  • Cárdenas AM, Doyle CK, Zhang X, Nethery K, Corstvet RE, Walker DH, McBride JW (2007) Enzyme-linked immunosorbent assay with conserved immunoreactive glycoproteins gp36 and gp19 has enhanced sensitivity and provides species-specific immunodiagnosis of Ehrlichia canis infection. Clin Vaccine Immunol 14:123–128. doi.org/10.1128/CVI.00361-06

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cardoso L, Tuna J, Vieira L, Yisaschar-Mekuzas Y, Baneth G (2010) Molecular detection of Anaplasma platys and Ehrlichia canis in dogs from the north of Portugal. Vet J 183:232–233. doi.org/10.1016/j.tvjl.2008.10.009

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaijarasphong T, Thammachai T, Itsathitphaisarn O, Sritunyalucksana K, Suebsing R (2019) Potential application of CRISPR-Cas12a fluorescence assay coupled with rapid nucleic acid amplification for detection of white spot syndrome virus in shrimp. Aquac 512:734340. doi.org/10.1016/j.aquaculture.2019.734340

    Article 
    CAS 

    Google Scholar
     

  • Chandrasekaran SS et al (2022) Rapid detection of SARS-CoV-2 RNA in saliva via cas13. Nat Biomed Eng 6:944–956. doi.org/10.1038/s41551-022-00917-y

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen JS, Ma E, Harrington LB, da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360:436–439. doi.org/10.1126/science.aar6245

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chomel B (2011) Tick-borne infections in dogs-an emerging infectious threat. Vet Parasitol 179:294–301. doi.org/10.1016/j.vetpar.2011.03.040

    Article 
    PubMed 

    Google Scholar
     

  • Cicuttin GL, Brambati DF, Rodríguez Eugui JI, Lebrero CG, de Salvo MN, Beltrán FJ, Gury Dohmen FE, Jado I, Anda P (2014) Molecular characterization of Rickettsia massiliae and Anaplasma platys infecting Rhipicephalus sanguineus ticks and domestic dogs, Buenos Aires (Argentina). Ticks Tick Borne Dis 5:484–488. doi.org/10.1016/j.ttbdis.2014.03.001

    Article 
    PubMed 

    Google Scholar
     

  • Crannell ZA, Rohrman B, Richards-Kortum R (2014) Equipment-free incubation of recombinase polymerase amplification reactions using body heat. PloS One 9:e112146. doi.org/10.1371/journal.pone.0112146

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding X, Yin K, Li Z, Lalla RV, Ballesteros E, Sfeir MM, Liu C (2020) Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat Commun 11:4711. doi.org/10.1038/s41467-020-18575-6

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dumler JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Rurangirwa FR (2001) Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and “HGE agent” as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51:2145–2165. doi.org/10.1099/00207713-51-6-2145

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fourie JJ, Stanneck D, Luus HG, Beugnet F, Wijnveld M, Jongejan F (2013) Transmission of Ehrlichia canis by Rhipicephalus sanguineus ticks feeding on dogs and on artificial membranes. Vet Parasitol 197:595–603. doi.org/10.1016/j.vetpar.2013.07.026

    Article 
    PubMed 

    Google Scholar
     

  • Fu S, Qu G, Guo S, Ma L, Zhang N, Zhang S, Gao S, Shen Z (2011) Applications of loop-mediated isothermal DNA amplification. Appl Biochem Biotechnol 163:845–850. doi.org/10.1007/s12010-010-9088-8

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerashchenkov GA, Rozhnova NA, Kuluev BR, Kiryanova O, Yu GGR, Knyazev AV, Vershinina ZR, Mikhailova EV, Chemeris DA, Matniyazov RT, Baimiev AK, Gubaidullin IM, Baimiev AK, Chemeris AV (2020) Design of guide RNA for CRISPR/Cas plant genome editing. Mol Biol 54:24–42. doi.org/10.1134/s0026893320010069

    Article 
    CAS 

    Google Scholar
     

  • Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F (2018) Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a and Csm6. Science 360:439–444. doi.org/10.1126/science.aaq0179

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gulati G, Song J, Florea AD, Gong J (2013) Purpose and criteria for blood smear scan, blood smear examination, and blood smear review. Ann Lab Med 33:1–7. doi.org/10.3343/alm.2013.33.1.1

    Article 
    PubMed 

    Google Scholar
     

  • Harrus S, Waner T (2011) Diagnosis of canine monocytotropic ehrlichiosis (Ehrlichia canis): an overview. Vet J 187:292–296. doi.org/10.1016/j.tvjl.2010.02.001

    Article 
    PubMed 

    Google Scholar
     

  • Inokuma H, Fujii K, Matsumoto K, Okuda M, Nakagome K, Kosugi R, Hirakawa M, Onishi T (2002) Demonstration of Anaplasma (Ehrlichia) platys inclusions in peripheral blood platelets of a dog in Japan. Vet Parasitol 110:145–152. doi.org/10.1016/s0304-4017(02)00289-3

    Article 
    PubMed 

    Google Scholar
     

  • Kham-Kjing N, Ngo-Giang-huong N, Tragoolpua K, Khamduang W, Hongjaisee S (2022) Highly specific and rapid detection of hepatitis c virus using RT-LAMP-coupled CRISPR–Cas12 assay. Diagnostics 12:1524. doi.org/10.3390/diagnostics12071524

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim S, Ji S, Koh HR (2021) CRISPR as a diagnostic tool. Biomolecules 11:1162. doi.org/10.3390/biom11081162

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koontz D, Dollard S, Cordovado S (2019) Evaluation of rapid and sensitive DNA extraction methods for detection of cytomegalovirus in dried blood spots. J Virol Methods 265:117–120. doi.org/10.1016/j.jviromet.2019.01.005

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kramer MF, Coen DM (2001) Enzymatic amplification of DNA by PCR: standard procedures and optimization. Curr Protoc Mol Biol 56:1511–15114. doi.org/10.1002/0471142727.mb1501s56

    Article 

    Google Scholar
     

  • Lauzi S, Maia JP, Epis S, Marcos R, Pereira C, Luzzago C, Santos M, Puente-Payo P, Giordano A, Pajoro M, Sironi G, Faustino A (2016) Molecular detection of Anaplasma platys, Ehrlichia canis, Hepatozoon canis and Rickettsia monacensis in dogs from Maio Island of Cape Verde archipelago. Ticks Tick Borne Dis 7:964–969. doi.org/10.1016/j.ttbdis.2016.05.001

    Article 
    PubMed 

    Google Scholar
     

  • Lee SY, Oh SW (2022) Filtration-based LAMP-CRISPR/Cas12a system for the rapid, sensitive and visualized detection of Escherichia coli O157:H7. Talanta 241:123186. doi.org/10.1016/j.talanta.2021.123186

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee S, Nam D, Park JS, Kim S, Lee ES, Cha BS, Park KS (2022) Highly efficient DNA reporter for CRISPR/Cas12a-based specific and sensitive biosensor. Biochip J 13:1–8. doi.org/10.1007/s13206-022-00081-0

    Article 
    CAS 

    Google Scholar
     

  • Lei R, Li L, Wu P, Fei X, Zhang Y, Wang J, Zhang D, Zhang Q, Yang N, Wang X (2021) RPA/CRISPR/Cas12a-based on-site and rapid nucleic acid detection of Toxoplasma gondii in the environment. ACS Synth Biol 11:1772–1781. doi.org/10.1021/acssynbio.1c00620

    Article 
    CAS 

    Google Scholar
     

  • Li J, Macdonald J (2015) Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens Bioelectron 64:196–211. doi.org/10.1016/j.bios.2014.08.069

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Li S, Wu N, Wu J, Wang G, Zhao G, Wang J (2019) HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol 8:2228–2237. doi.org/10.1021/acssynbio.9b00209

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lloyd SJ, LaPatra SE, Snekvik KR, Cain KD, Call DR (2011) Quantitative PCR demonstrates a positive correlation between a Rickettsia-like organism and severity of strawberry disease lesions in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 34:701–709. doi.org/10.1111/j.1365-2761.2011.01285.x

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu S, Li F, Chen Q, Wu J, Duan J, Lei X, Zhang Y, Zhao D, Bu Z, Yin H (2020) Rapid detection of African swine fever virus using Cas12a-based portable paper diagnostics. Cell Discov 6:18. doi.org/10.1038/s41421-020-0151-5

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv H, Wang J, Zhang J, Chen Y, Yin L, Jin D, Gu D, Zhao H, Xu Y, Wang J (2021) Definition of CRISPR Cas12a trans-cleavage units to facilitate CRISPR diagnostics. Front Microbiol 12:766464. doi.org/10.3389/fmicb.2021.766464

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mason MG, Botella JR (2022) Rapid (30-second), equipment-free purification of nucleic acids using easy-to-make dipsticks. Nat Protoc 15:3663–3677. doi.org/10.1038/s41596-020-0392-7

    Article 
    CAS 

    Google Scholar
     

  • Mukama O, Yuan T, He Z, Li Z, Habimana JD, Hussain M, Li W, Yi Z, Liang Q, Zeng L (2020) A high fidelity CRISPR/Cas12a based lateral flow biosensor for the detection of HPV16 and HPV18. Sens Actuator A Phys 316:128119. doi.org/10.1016/j.snb.2020.128119

    Article 
    CAS 

    Google Scholar
     

  • Mylonakis ME, Koutinas AF, Billinis C, Leontides LS, Kontos V, Papadopoulos O, Rallis T, Fytianou A (2003) Evaluation of cytology in the diagnosis of acute canine monocytic ehrlichiosis (Ehrlichia canis): a comparison between five methods. Vet Microbiol 91:197–204. doi.org/10.1016/s0378-1135(02)00298-5

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nasr A, Ghafar M, Elhariri M (2020) Detection of Anaplasma platys and Ehrlichia canis in Rhipicephalus sanguineus ticks attached to dogs from Egypt; a public health concern. J Vet Med 66:1–9. doi.org/10.21608/vmjg.2020.157540

    Article 

    Google Scholar
     

  • Pérez-Macchi S, Pedrozo R, Bittencourt P, Müller A (2019) Prevalence, molecular characterization and risk factor analysis of Ehrlichia canis and Anaplasma platys in domestic dogs from Paraguay. Comp Immunol Microbiol Infect Dis 62:31–39. doi.org/10.1016/j.cimid.2018.11.015

    Article 
    PubMed 

    Google Scholar
     

  • Pinyoowong D, Jittapalapong S, Suksawat F, Stich RW, Thamchaipenet A (2008) Molecular characterization of Thai Ehrlichia canis and Anaplasma platys strains detected in dogs. Infect Genet Evol 8:433–438. doi.org/10.1016/j.meegid.2007.06.002

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin P, Park M, Alfson KJ, Tamhankar M, Carrion R, Patterson JL, Griffiths A, He Q, Yildiz A, Mathies R, Du K (2019) Rapid and fully microfluidic ebola virus detection with CRISPR-Cas13a. ACS Sens 4:1048–1054. doi.org/10.1021/acssensors.9b00239

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rohrman BA, Leautaud V, Molyneux E, Richards-Kortum RR (2012) A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLoS ONE 7:0045611. doi.org/10.1371/journal.pone.0045611

    Article 
    CAS 

    Google Scholar
     

  • Rucksaken R, Maneeruttanarungroj C, Maswanna T, Sussadee M, Kanbutra P (2019) Comparison of conventional polymerase chain reaction and routine blood smear for the detection of Babesia canis, Hepatozoon canis, Ehrlichia canis, and Anaplasma platys in Buriram Province, Thailand. Vet World 12:700–705. doi.org/10.14202/vetworld.2019.700-705

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suksawat J, Hegarty BC, Breitschwerdt EB (2000) Seroprevalence of Ehrlichia canis, Ehrlichia equi, and Ehrlichia risticii in sick dogs from north Carolina and Virginia. J Vet Intern Med 14:50–55. doi.org/10.1111/j.1939-1676.2000.tb01499.x

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Unver A, Rikihisa Y, Kawahara M, Yamamoto S (2003) Analysis of 16S rRNA gene sequences of Ehrlichia canis, Anaplasma platys, and Wolbachia species from canine blood in Japan. In Ann N Y Acad Sci 990:692–698. doi.org/10.1111/j.1749-6632.2003.tb07445.x

    Article 
    CAS 

    Google Scholar
     

  • Waner T, Strenger C, Keysary A (2000) Comparison of a clinic-based ELISA test kit with the immunofluorescence test for the assay of Ehrlichia canis antibodies in dogs. J Vet Diagn Invest 12:101370. doi.org/10.1016/j.ttbdis.2020.101370

    Article 

    Google Scholar
     

  • Wang B, Wang R, Wang D, Wu J, Li J, Wang J, Liu H, Wang Y (2019) Cas12aVDet: A CRISPR/Cas12a-Based Platform for Rapid and Visual Nucleic Acid Detection. Anal Chem 91:12156–12161. doi.org/10.1021/acs.analchem.9b01526

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang X, Ji P, Fan H, Dang L, Wan W, Liu S, Li Y, Yu W, Li X, Ma X, Ma X, Zhao Q, Huang X, Liao M (2020) CRISPR/Cas12a technology combined with immunochromatographic strips for portable detection of African swine fever virus. Commun Biol 3:62. doi.org/10.1038/s42003-020-0796-5

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu H, Tang H, Li R, Xia Z, Yang W, Zhu Y, Liu Z, Lu G, Ni S, Shen J (2022) A new method based on LAMP-CRISPR–Cas12a-lateral flow immunochromatographic strip for detection. Infect Drug Resist 15:685–696. doi.org/10.2147/IDR.S348456

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yabsley MJ, McKibben J, Macpherson CN, Cattan PF, Cherry NA, Hegarty BC, Breitschwerdt EB, O’Connor T, Chandrashekar R, Paterson T, Perea ML, Ball G, Friesen S, Goedde J, Henderson B, Sylvester W (2008) Prevalence of Ehrlichia canis, Anaplasma platys, Babesia canis vogeli, Hepatozoon canis, Bartonella vinsonii berkhoffii, and Rickettsia spp. in dogs from Grenada. Vet Parasitol 151:279–285. doi.org/10.1016/j.vetpar.2007.11.008

    Article 
    PubMed 

    Google Scholar
     

  • Yang B, Shi Z, Ma Y, Wang L, Cao L, Luo J, Wan Y, Song R, Yan Y, Yuan K, Tian H, Zheng H (2022) LAMP assay coupled with CRISPR/Cas12a system for portable detection of African swine fever virus. Transbound Emerg Dis 69:e216–e223. doi.org/10.1111/tbed.14285

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuasa Y, Tsai YL, Chang CC, Hsu TH, Chou CC (2017) The prevalence of anaplasma platys and a potential novel anaplasma species exceed that of Ehrlichia canis in asymptomatic dogs and Rhipicephalus sanguineus in Taiwan. J Vet Med 79:1494–1502. doi.org/10.1292/jvms.17-0224

    Article 
    CAS 

    Google Scholar
     

  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771. doi.org/10.1016/j.cell.2015.09.038

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Li Z, Chen M, Hu Z, Wu L, Zhou M, Liang D (2021) Cas12a and lateral flow strip-based test for rapid and ultrasensitive detection of spinal muscular atrophy. Biosensors 11:154. doi.org/10.3390/bios11050154

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link