Revolutionizing viral disease vaccination: the promising clinical advancements of non-replicating mRNA vaccines | Virology Journal

  • To KK-W, Sridhar S, Chiu KH-Y, Hung DL-L, Li X, Hung IF-N, Tam AR, Chung TW-H, Chan JF-W, Zhang AJ-X, et al. Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerg Microbes Infect. 2021;10(1):507–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;369(6499):77–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, Plested JS, Zhu M, Cloney-Clark S, Zhou H, et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020;383(24):2320–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez-Felipe L, Vercruysse T, Sharma S, Ma J, Lemmens V, Van Looveren D, Arkalagud Javarappa MP, Boudewijns R, Malengier-Devlies B, Liesenborghs L, et al. A single-dose live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate. Nature. 2021;590(7845):320–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rawat K, Kumari P, Saha L. COVID-19 vaccine: a recent update in pipeline vaccines, their design and development strategies. Eur J Pharmacol. 2021;892: 173751.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol. 2019;10:594.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discovery. 2014;13(10):759–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413(6857):732–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diebold SS, Kaisho T, Hemmi H, Akira S. Reis e Sousa C: Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303(5663):1526–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–75.

    Article 
    PubMed 

    Google Scholar
     

  • Xu S, Yang K, Li R, Zhang L. mRNA vaccine era-mechanisms, drug platform and clinical prospection. Int J Mol Sci. 2020;21(18):6582.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reichmuth AM, Oberli MA, Jaklenec A, Langer R, Blankschtein D. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv. 2016;7(5):319–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med. 2020;383(27):2603–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mockey M, Gonçalves C, Dupuy FP, Lemoine FM, Pichon C, Midoux P. mRNA transfection of dendritic cells: synergistic effect of ARCA mRNA capping with Poly(A) chains in cis and in trans for a high protein expression level. Biochem Biophys Res Commun. 2006;340(4):1062–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stepinski J, Waddell C, Stolarski R, Darzynkiewicz E, Rhoads RE. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3’-O-methyl)GpppG and 7-methyl (3’-deoxy)GpppG. RNA. 2001;7(10):1486–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krienke C, Kolb L, Diken E, Streuber M, Kirchhoff S, Bukur T, Akilli-Öztürk Ö, Kranz Lena M, Berger H, Petschenka J, et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science. 2021;371(6525):145–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar P, Sweeney TR, Skabkin MA, Skabkina OV, Hellen CUT, Pestova TV. Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5’-terminal regions of cap0-, cap1- and 5’ppp- mRNAs. Nucleic Acids Res. 2014;42(5):3228–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pardi N, Secreto AJ, Shan X, Debonera F, Glover J, Yi Y, Muramatsu H, Ni H, Mui BL, Tam YK, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:14630–14630.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zarghampoor F, Azarpira N, Khatami SR, Behzad-Behbahani A, Foroughmand AM. Improved translation efficiency of therapeutic mRNA. Gene. 2019;707:231–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • August A, Attarwala HZ, Himansu S, Kalidindi S, Lu S, Pajon R, Han S, Lecerf JM, Tomassini JE, Hard M, et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat Med. 2021;27(12):2224–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aldrich C, Leroux-Roels I, Huang KB, Bica MA, Loeliger E, Schoenborn-Kellenberger O, Walz L, Leroux-Roels G, von Sonnenburg F, Oostvogels L. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: a phase 1 trial. Vaccine. 2021;39(8):1310–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim SC, Sekhon SS, Shin WR, Ahn G, Cho BK, Ahn JY, Kim YH. Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency. Mol Cell Toxicol. 2022;18(1):1–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Zhang Z, Luo J, Han X, Wei Y, Wei X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer. 2021;20(1):33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson NAC, Kester KE, Casimiro D, Gurunathan S, DeRosa F. The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines. 2020;5:11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pelletier J, Sonenberg N. Insertion mutagenesis to increase secondary structure within the 5’ noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell. 1985;40(3):515–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5’-untranslated regions of eukaryotic mRNAs. Science. 2016;352(6292):1413–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asrani KH, Farelli JD, Stahley MR, Miller RL, Cheng CJ, Subramanian RR, Brown JM. Optimization of mRNA untranslated regions for improved expression of therapeutic mRNA. RNA Biol. 2018;15(6):756–62.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayr C. Regulation by 3’-untranslated regions. Annu Rev Genet. 2017;51:171–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanguay RL, Gallie DR. Translational efficiency is regulated by the length of the 3’ untranslated region. Mol Cell Biol. 1996;16(1):146–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holtkamp S, Kreiter S, Selmi A, Simon P, Koslowski M, Huber C, Türeci O, Sahin U. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood. 2006;108(13):4009–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kon E, Elia U, Peer D. Principles for designing an optimal mRNA lipid nanoparticle vaccine. Curr Opin Biotechnol. 2022;73:329–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mignone F, Gissi C, Liuni S, Pesole G. Untranslated regions of mRNAs. Genome Biol. 2002;3(3):REVIEWS0004-REVIEWS0004.

  • Gustafsson C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004;22(7):346–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Linares-Fernández S, Lacroix C, Exposito JY, Verrier B. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol Med. 2020;26(3):311–23.

    Article 
    PubMed 

    Google Scholar
     

  • Kudla G, Lipinski L, Caffin F, Helwak A, Zylicz M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 2006;4(6): e180.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnee M, Vogel AB, Voss D, Petsch B, Baumhof P, Kramps T, Stitz L. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PLoS Negl Trop Dis. 2016;10(6):e0004746–e0004746.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petsch B, Schnee M, Vogel AB, Lange E, Hoffmann B, Voss D, Schlake T, Thess A, Kallen KJ, Stitz L, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. 2012;30(12):1210–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lima SA, Chipman LB, Nicholson AL, Chen YH, Yee BA, Yeo GW, Coller J, Pasquinelli AE. Short poly(A) tails are a conserved feature of highly expressed genes. Nat Struct Mol Biol. 2017;24(12):1057–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grier AE, Burleigh S, Sahni J, Clough CA, Cardot V, Choe DC, Krutein MC, Rawlings DJ, Jensen MC, Scharenberg AM, et al. pEVL: a linear plasmid for generating mRNA IVT templates with extended encoded poly(a) sequences. Mol Ther Nucleic Acids. 2016;5(4): e306.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linares-Fernández S, Moreno J, Lambert E, Mercier-Gouy P, Vachez L, Verrier B, Exposito J-Y. Combining an optimized mRNA template with a double purification process allows strong expression of in vitro transcribed mRNA. Mol Ther Nucleic Acids. 2021;26:945–56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505(7481):117–20.

    Article 
    PubMed 

    Google Scholar
     

  • Parr CJC, Wada S, Kotake K, Kameda S, Matsuura S, Sakashita S, Park S, Sugiyama H, Kuang Y, Saito H. N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. Nucleic Acids Res. 2020;48(6): e35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang W, Lin Z, Du C, Qiu D, Zhang Q. mRNA modification orchestrates cancer stem cell fate decisions. Mol Cancer. 2020;19(1):38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang M, Sun J, Li M, Jin X. Modified mRNA-LNP vaccines confer protection against experimental DENV-2 infection in mice. Mol Therapy Methods Clin Develop. 2020;18:702–12.

    Article 

    Google Scholar
     

  • Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, Weissman D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–40.

    Article 
    PubMed 

    Google Scholar
     

  • Pardi N, Weissman D. Nucleoside modified mRNA vaccines for infectious diseases. Methods Mol Biol (Clifton, NJ). 2017;1499:109–21.

    Article 
    CAS 

    Google Scholar
     

  • Triana-Alonso FJ, Dabrowski M, Wadzack J, Nierhaus KH. Self-coded 3’-extension of run-off transcripts produces aberrant products during in vitro transcription with T7 RNA polymerase. J Biol Chem. 1995;270(11):6298–307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karikó K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011;39(21): e142.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weissman D, Pardi N, Muramatsu H, Karikó K. HPLC purification of in vitro transcribed long RNA. Methods Mol Biol (Clifton, NJ). 2013;969:43–54.

    Article 
    CAS 

    Google Scholar
     

  • Baiersdörfer M, Boros G, Muramatsu H, Mahiny A, Vlatkovic I, Sahin U, Karikó K. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol Ther Nucleic Acids. 2019;15:26–35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borkotoky S, Murali A. The highly efficient T7 RNA polymerase: a wonder macromolecule in biological realm. Int J Biol Macromol. 2018;118(Pt A):49–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Passalacqua LFM, Dingilian AI, Lupták A. Single-pass transcription by T7 RNA polymerase. RNA. 2020;26(12):2062–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cavac E, Ramírez-Tapia LE, Martin CT. High-salt transcription of DNA cotethered with T7 RNA polymerase to beads generates increased yields of highly pure RNA. J Biol Chem. 2021;297(3): 100999.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • M.Miller, Alvizo O, Chng C, Jenne S, Mayo M, Mukherjee A, Sundseth S, Chinthala A, Penfield J, Riggins J et al. An engineered T7 RNA polymerase for efficient co-transcriptional capping with reduced dsRNA byproducts in mRNA synthesis. 2022.

  • Xia H, Yu B, Jiang Y, Cheng R, Lu X, Wu H, Zhu B. Psychrophilic phage VSW-3 RNA polymerase reduces both terminal and full-length dsRNA byproducts in in vitro transcription. RNA Biol. 2022;19(1):1130–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu H, Wei T, Yu B, Cheng R, Huang F, Lu X, Yan Y, Wang X, Liu C, Zhu B. A single mutation attenuates both the transcription termination and RNA-dependent RNA polymerase activity of T7 RNA polymerase. RNA Biol. 2021;18(sup1):451–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vlatkovic I. Non-Immunotherapy application of LNP-mRNA: maximizing efficacy and safety. Biomedicines. 2021;9(5):530.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—A new era in vaccinology. Nat Rev Drug Discovery. 2018;17(4):261–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pardi N, Tuyishime S, Muramatsu H, Kariko K, Mui BL, Tam YK, Madden TD, Hope MJ, Weissman D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release: Off J Control Release Soc. 2015;217:345–51.

    Article 
    CAS 

    Google Scholar
     

  • Yin Y, Li X, Ma H, Zhang J, Yu D, Zhao R, Yu S, Nie G, Wang H. In situ transforming RNA nanovaccines from polyethylenimine functionalized graphene oxide hydrogel for durable cancer immunotherapy. Nano Lett. 2021;21(5):2224–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang NN, Li XF, Deng YQ, Zhao H, Huang YJ, Yang G, Huang WJ, Gao P, Zhou C, Zhang RR, et al. A thermostable mRNA vaccine against COVID-19. Cell. 2020;182(5):1271-1283.e1216.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muramatsu H, Lam K, Bajusz C, Laczkó D, Karikó K, Schreiner P, Martin A, Lutwyche P, Heyes J, Pardi N. Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Mol Ther. 2022;30(5):1941–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mortaz E, Tabarsi P, Varahram M, Folkerts G, Adcock IM. The immune response and immunopathology of COVID-19. Front Immunol. 2020;11:2037.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, Tan KS, Wang DY, Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Mil Med Res. 2020;7(1):11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLean HQ, Grijalva CG, Hanson KE, Zhu Y, Deyoe JE, Meece JK, Halasa NB, Chappell JD, Mellis AM, Reed C et al. Household transmission and clinical features of SARS-CoV-2 infections. Pediatrics 2022;149(3).

  • Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e278.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh EE, Frenck RW Jr, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med. 2020;383(25):2439–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Polack FP, Zerbini C, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N Engl J Med. 2021;385(19):1761–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Corbett KS, Flynn B, Foulds KE, Francica JR, Boyoglu-Barnum S, Werner AP, Flach B, O’Connell S, Bock KW, Minai M, et al. Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. N Engl J Med. 2020;383(16):1544–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Mateus J, Coelho CH, Dan JM, Moderbacher CR, Gálvez RI, Cortes FH, Grifoni A, Tarke A, Chang J, et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell. 2022;185(14):2434-2451.e2417.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mistry P, Barmania F, Mellet J, Peta K, Strydom A, Viljoen IM, James W, Gordon S, Pepper MS. SARS-CoV-2 variants, vaccines, and host immunity. Front Immunol. 2021;12: 809244.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kremsner PG, Ahuad Guerrero RA, Arana-Arri E, Aroca Martinez GJ, Bonten M, Chandler R, Corral G, De Block EJL, Ecker L, Gabor JJ, et al. Efficacy and safety of the CVnCoV SARS-CoV-2 mRNA vaccine candidate in ten countries in Europe and Latin America (HERALD): a randomised, observer-blinded, placebo-controlled, phase 2b/3 trial. Lancet Infect Dis. 2022;22(3):329–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gebre MS, Rauch S, Roth N, Yu J, Chandrashekar A, Mercado NB, He X, Liu J, McMahan K, Martinot A, et al. Optimization of non-coding regions for a non-modified mRNA COVID-19 vaccine. Nature. 2022;601(7893):410–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X, Li D, Ruan W, Chen Z, Zhang R, Zheng A, Qiao S, Zheng X, Zhao Y, Dai L, et al. Effects of a prolonged booster interval on neutralization of omicron variant. N Engl J Med. 2022;386(9):894–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han Y, An Y, Chen Q, Xu K, Liu X, Xu S, Duan H, Vogel AB, Şahin U, Wang Q et al. mRNA vaccines expressing homo-prototype/Omicron and hetero-chimeric RBD-dimers against SARS-CoV-2. Cell Res. 2022:1–4.

  • Musso D, Gubler DJ. Zika virus. Clin Microbiol Rev. 2016;29(3):487–524.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richner JM, Himansu S, Dowd KA, Butler SL, Salazar V, Fox JM, Julander JG, Tang WW, Shresta S, Pierson TC, et al. Modified mRNA vaccines protect against Zika virus infection. Cell. 2017;168(6):1114-1125.e1110.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richner JM, Jagger BW, Shan C, Fontes CR, Dowd KA, Cao B, Himansu S, Caine EA, Nunes BTD, Medeiros DBA, et al. Vaccine mediated protection against Zika virus-induced congenital disease. Cell. 2017;170(2):273-283.e212.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pierson TC, Xu Q, Nelson S, Oliphant T, Nybakken GE, Fremont DH, Diamond MS. The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe. 2007;1(2):135–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dowd KA, Pierson TC. Antibody-mediated neutralization of flaviviruses: a reductionist view. Virology. 2011;411(2):306–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roth C, Cantaert T, Colas C, Prot M, Casadémont I, Levillayer L, Thalmensi J, Langlade-Demoyen P, Gerke C, Bahl K, et al. A Modified mRNA vaccine targeting immunodominant NS epitopes protects against dengue virus infection in HLA Class I transgenic mice. Front Immunol. 2019;10:1424.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmes EC, Dudas G, Rambaut A, Andersen KG. The evolution of Ebola virus: insights from the 2013–2016 epidemic. Nature. 2016;538(7624):193–200.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Clercq E. Ebola virus (EBOV) infection: therapeutic strategies. Biochem Pharmacol. 2015;93(1):1–10.

    Article 
    PubMed 

    Google Scholar
     

  • Burd EM. Ebola virus: a clear and present danger. J Clin Microbiol. 2015;53(1):4–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zawilińska B, Kosz-Vnenchak M. General introduction into the Ebola virus biology and disease. Folia Med Cracov. 2014;54(3):57–65.

    PubMed 

    Google Scholar
     

  • Meyer M, Huang E, Yuzhakov O, Ramanathan P, Ciaramella G, Bukreyev A. Modified mRNA-based vaccines elicit robust immune responses and protect Guinea Pigs from Ebola virus disease. J Infect Dis. 2018;217(3):451–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nachbagauer R, Palese P. Is a universal influenza virus vaccine possible? Annu Rev Med. 2020;71:315–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, Laska ME, Smith M, Almarsson Ö, Thompson J, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol Ther. 2017;25(6):1316–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feldman RA, Fuhr R, Smolenov I, Mick Ribeiro A, Panther L, Watson M, Senn JJ, Smith M, Almarsson Ӧ, Pujar HS, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine. 2019;37(25):3326–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banyard AC, Tordo N. Rabies pathogenesis and immunology. Revue scientifique et technique (International Office of Epizootics). 2018;37(2):323–30.

    CAS 
    PubMed 

    Google Scholar
     

  • Davis BM, Rall GF, Schnell MJ. Everything you always wanted to know about rabies virus (but were afraid to ask). Annu Rev Virol. 2015;2(1):451–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alberer M, Gnad-Vogt U, Hong HS, Mehr KT, Backert L, Finak G, Gottardo R, Bica MA, Garofano A, Koch SD, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet (London, England). 2017;390(10101):1511–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stitz L, Vogel A, Schnee M, Voss D, Rauch S, Mutzke T, Ketterer T, Kramps T, Petsch B. A thermostable messenger RNA based vaccine against rabies. PLoS Negl Trop Dis. 2017;11(12):e0006108–e0006108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fanales-Belasio E, Raimondo M, Suligoi B, Buttò S. HIV virology and pathogenetic mechanisms of infection: a brief overview. Annali dell’Istituto superiore di sanita. 2010;46(1):5–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Simon V, Ho DD, Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet (London, England). 2006;368(9534):489–504.

    Article 
    PubMed 

    Google Scholar
     

  • Khalid K, Padda J, Khedr A, Ismail D, Zubair U, Al-Ewaidat OA, Padda S, Cooper AC, Jean-Charles G. HIV and messenger RNA (mRNA) vaccine. Cureus. 2021;13(7):e16197–e16197.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacobson JM, Routy J-P, Welles S, DeBenedette M, Tcherepanova I, Angel JB, Asmuth DM, Stein DK, Baril J-G, McKellar M, et al. Dendritic cell immunotherapy for HIV-1 infection using autologous HIV-1 RNA: a randomized, double-blind, placebo-controlled clinical trial. J Acquir Immune Defic Syndr. 2016;72(1):31–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao M, Li M, Zhang Z, Gong T, Sun X. Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Delivery. 2016;23(7):2596–607.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun C, Zuo T, Wen Z. First clinical study of germline-targeting strategy: One step closer to a successful bnAb-based HIV vaccine. Innovation (Cambridge (Mass)) 2023;4(1):100374.

  • Fortner A, Bucur O. mRNA-based vaccine technology for HIV. Discoveries (Craiova, Romania). 2022;10(2): e150.

    PubMed 

    Google Scholar
     

  • Nowalk A, Green M: Epstein-Barr Virus. Microbiol Spectrum 2016;4(3).

  • Neves M, Marinho-Dias J, Ribeiro J, Sousa H. Epstein-Barr virus strains and variations: Geographic or disease-specific variants? J Med Virol. 2017;89(3):373–87.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foster H, Ulasov IV, Cobbs CS. Human cytomegalovirus-mediated immunomodulation: effects on glioblastoma progression. Biochim Biophys Acta. 2017;1868(1):273–6.

    CAS 

    Google Scholar
     

  • Hurt C, Tammaro D. Diagnostic evaluation of mononucleosis-like illnesses. Am J Med. 2007;120(10):911.e911-918.

    Article 

    Google Scholar
     

  • Dioverti MV, Razonable RR: Cytomegalovirus. Microbiol Spectrum 2016;4(4).

  • Diken M, Kreiter S, Selmi A, Britten CM, Huber C, Türeci Ö, Sahin U. Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther. 2011;18(7):702–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batich KA, Mitchell DA, Healy P, Herndon JE 2nd, Sampson JH. Once, twice, three times a finding: reproducibility of dendritic cell vaccine trials targeting cytomegalovirus in glioblastoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2020;26(20):5297–303.

    Article 
    CAS 

    Google Scholar
     

  • John S, Yuzhakov O, Woods A, Deterling J, Hassett K, Shaw CA, Ciaramella G. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine. 2018;36(12):1689–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kares S, Veijalainen O, Kholová I, Tirkkonen M, Vuento R, Huhtala H, Tuimala V, Mäenpää J, Kujala P. HIGH-RISK HPV testing as the primary screening method in an organized regional screening program for cervical cancer: the value of HPV16 and HPV18 genotyping? APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica. 2019;127(11):710–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salomon N, Selmi A, Grunwitz C, Kong A, Stanganello E, Neumaier J, Petschenka J, Diken M, Kreiter S, Türeci Ö, et al. Local radiotherapy and E7 RNA-LPX vaccination show enhanced therapeutic efficacy in preclinical models of HPV16(+) cancer. Cancer Immunol Immunother: CII. 2022;71(8):1975–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Awasthi S, Friedman HM. An mRNA vaccine to prevent genital herpes. Transl Res. 2022;242:56–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Awasthi S, Hook LM, Pardi N, Wang F, Myles A, Cancro MP, Cohen GH, Weissman D, Friedman HM. Nucleoside-modified mRNA encoding HSV-2 glycoproteins C, D, and E prevents clinical and subclinical genital herpes. Sci Immunol. 2019;4(39):eaaw7083.

  • Awasthi S, Knox JJ, Desmond A, Alameh MG, Gaudette BT, Lubinski JM, Naughton A, Hook LM, Egan KP, Tam YK et al. Trivalent nucleoside-modified mRNA vaccine yields durable memory B cell protection against genital herpes in preclinical models. J Clin Investig. 2021;131(23).

  • Matucci A, Nencini F, Pratesi S, Maggi E, Vultaggio A. An overview on safety of monoclonal antibodies. Curr Opin Allergy Clin Immunol. 2016;16(6):576–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marston HD, Paules CI, Fauci AS. Monoclonal antibodies for emerging infectious diseases – borrowing from history. N Engl J Med. 2018;378(16):1469–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sparrow E, Friede M, Sheikh M, Torvaldsen S. Therapeutic antibodies for infectious diseases. Bull World Health Organ. 2017;95(3):235–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith SA, Silva LA, Fox JM, Flyak AI, Kose N, Sapparapu G, Khomandiak S, Ashbrook AW, Kahle KM, Fong RH, et al. Isolation and characterization of broad and ultrapotent human monoclonal antibodies with therapeutic activity against Chikungunya virus. Cell Host Microbe. 2015;18(1):86–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kose N, Fox JM, Sapparapu G, Bombardi R, Tennekoon RN, de Silva AD, Elbashir SM, Theisen MA, Humphris-Narayanan E, Ciaramella G et al. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Sci Immunol. 2019;4(35).

  • Van Hoecke L, Roose K. How mRNA therapeutics are entering the monoclonal antibody field. J Transl Med. 2019;17(1):54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeFilippis VR. Chikungunya virus vaccines: platforms, progress, and challenges. Curr Top Microbiol Immunol. 2022;435:81–106.

    CAS 
    PubMed 

    Google Scholar
     

  • Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng YQ, Zhang NN, Zhang YF, Zhong X, Xu S, Qiu HY, Wang TC, Zhao H, Zhou C, Zu SL, et al. Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters. Cell Res. 2022;32(4):375–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Hoecke L, Verbeke R, De Vlieger D, Dewitte H, Roose K, Van Nevel S, Krysko O, Bachert C, Schepens B, Lentacker I, et al. mRNA Encoding a bispecific single domain antibody construct protects against influenza A virus infection in mice. Mol Ther Nucleic Acids. 2020;20:777–87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Erasmus JH, Archer J, Fuerte-Stone J, Khandhar AP, Voigt E, Granger B, Bombardi RG, Govero J, Tan Q, Durnell LA, et al. Intramuscular delivery of replicon RNA encoding ZIKV-117 human monoclonal antibody protects against Zika virus Infection. Mol Therapy Methods Clin Develop. 2020;18:402–14.

    Article 
    CAS 

    Google Scholar
     

  • Tiwari PM, Vanover D, Lindsay KE, Bawage SS, Kirschman JL, Bhosle S, Lifland AW, Zurla C, Santangelo PJ. Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection. Nat Commun. 2018;9(1):3999.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hotz C, Wagenaar TR, Gieseke F, Bangari DS, Callahan M, Cao H, Diekmann J, Diken M, Grunwitz C, Hebert A et al. Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci Transl Med. 2021;13(610):eabc7804.

  • Van Hoecke L, Verbeke R, Dewitte H, Lentacker I, Vermaelen K, Breckpot K, Van Lint S. mRNA in cancer immunotherapy: beyond a source of antigen. Mol Cancer. 2021;20(1):48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol: Int Publ Bt Ind Biol Res Assoc. 2022;164: 113008.

    Article 
    CAS 

    Google Scholar
     

  • Blakney AK, Ip S, Geall AJ. An update on self-amplifying mRNA vaccine development. Vaccines (Basel) 2021, 9(2).

  • Kim J, Eygeris Y, Gupta M, Sahay G. Self-assembled mRNA vaccines. Adv Drug Deliv Rev. 2021;170:83–112.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • To KKW, Cho WCS. An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov. 2021;16(11):1307–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qu L, Yi Z, Shen Y, Lin L, Chen F, Xu Y, Wu Z, Tang H, Zhang X, Tian F, et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell. 2022;185(10):1728-1744.e1716.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, Peacock SJ, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Beuckelaer A, Grooten J, De Koker S. Type I Interferons modulate CD8(+) T cell immunity to mRNA vaccines. Trends Mol Med. 2017;23(3):216–26.

    Article 
    PubMed 

    Google Scholar
     

  • Boettler T, Csernalabics B, Salié H, Luxenburger H, Wischer L, Salimi Alizei E, Zoldan K, Krimmel L, Bronsert P, Schwabenland M, et al. SARS-CoV-2 vaccination can elicit a CD8 T-cell dominant hepatitis. J Hepatol. 2022;77(3):653–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerji A, Wickner PG, Saff R, Stone CA Jr, Robinson LB, Long AA, Wolfson AR, Williams P, Khan DA, Phillips E, et al. mRNA Vaccines to prevent COVID-19 disease and reported allergic reactions: current evidence and suggested approach. J Allergy Clin Immunol Pract. 2021;9(4):1423–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Dam CS, Lede I, Schaar J, Al-Dulaimy M, Rösken R, Smits M. Herpes zoster after COVID vaccination. Int J Infect Diseases: IJID: Off Publ Int Soc Infect Diseases. 2021;111:169–71.


    Google Scholar
     

  • Cui Z, Zeng C, Huang F, Yuan F, Yan J, Zhao Y, Zhou Y, Hankey W, Jin VX, Huang J, et al. Cas13d knockdown of lung protease Ctsl prevents and treats SARS-CoV-2 infection. Nat Chem Biol. 2022;18(10):1056–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang R, Deng Y, Huang B, Huang L, Lin A, Li Y, Wang W, Liu J, Lu S, Zhan Z, et al. A core-shell structured COVID-19 mRNA vaccine with favorable biodistribution pattern and promising immunity. Signal Transduct Target Ther. 2021;6(1):213.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • August A, Shaw CA, Lee H, Knightly C, Kalidindia S, Chu L, Essink BJ, Seger W, Zaks T, Smolenov I et al. Safety and immunogenicity of an mRNA-based human metapneumovirus and parainfluenza virus type 3 combined vaccine in healthy adults. Open Forum Infect Diseases 2022;9(7):ofac206.

  • Haranaka M, Baber J, Ogama Y, Yamaji M, Aizawa M, Kogawara O, Scully I, Lagkadinou E, Türeci Ӧ, Şahin U, et al. A randomized study to evaluate safety and immunogenicity of the BNT162b2 COVID-19 vaccine in healthy Japanese adults. Nat Commun. 2021;12(1):7105.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Follmann D, Janes HE, Buhule OD, Zhou H, Girard B, Marks K, Kotloff K, Desjardins M, Corey L, Neuzil KM, et al. Antinucleocapsid antibodies after SARS-CoV-2 infection in the blinded phase of the randomized, placebo-controlled mRNA-1273 COVID-19 vaccine efficacy clinical trial. Ann Intern Med. 2022;175(9):1258–65.

    Article 
    PubMed 

    Google Scholar
     

  • Gandhi RT, Kwon DS, Macklin EA, Shopis JR, McLean AP, McBrine N, Flynn T, Peter L, Sbrolla A, Kaufmann DE, et al. Immunization of HIV-1-infected persons with autologous dendritic cells transfected with mRNA encoding HIV-1 Gag and Nef: results of a randomized, placebo-controlled clinical trial. J Acquir Immune Defic Syndr. 2016;71(3):246–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Jong W, Aerts J, Allard S, Brander C, Buyze J, Florence E, van Gorp E, Vanham G, Leal L, Mothe B, et al. iHIVARNA phase IIa, a randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of iHIVARNA-01 in chronically HIV-infected patients under stable combined antiretroviral therapy. Trials. 2019;20(1):361.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link