Voltammetric and impedimetric analysis of adriamycin and fish sperm DNA interaction using pencil graphite electrodes

  • McGown LB, Joseph MJ, Pitner JB et al (1995) The nucleic acid ligand. A new tool for molecular recognition. Anal Chem 67:663A?8A. doi.org/10.1021/ac00117a002

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Topkaya SN, Cetin AE (2019) Determination of electrochemical interaction between 2-(1H-benzimidazol-2-yl) phenol and DNA sequences. Electroanalysis 31:1571?1578. doi.org/10.1002/elan.201900199

    Article 
    CAS 

    Google Scholar
     

  • Chu X, Shen G, Jiang J, Yu R (1999) Intercalation of pharmorubicin anticancer drug to DNA studied by cyclic voltammetry with analytical applications. Anal Lett 32:717?727

    Article 

    Google Scholar
     

  • Topkaya SN, Karasakal A, Cetin AE et al (2020) Electrochemical characteristics of a novel pyridinium salt as a candidate drug molecule and its Interaction with DNA. Electroanalysis 32:1780?1787. doi.org/10.1002/elan.202000012

    Article 
    CAS 

    Google Scholar
     

  • Kurucsev T, Kubista M (1992) Linear dichroism spectroscopy of nucleic acids. Q Rev Biophys 25:51?170. doi.org/10.1017/S0033583500004728

    Article 
    PubMed 

    Google Scholar
     

  • Lown JW, Hanstock CC, Bradley BD, Scraba DG (1984) Interactions of the antitumor agents mitoxantrone and bisantrene with deoxyribonucleic acids studied by electron microscopy. Mol Pharmacol 25:178?184

    CAS 
    PubMed 

    Google Scholar
     

  • Fritzsche H, Akhebat A, Taillandier E et al (1993) Structure and drug interaction of parellel-stranded DNA studies by infrared spectroscope and fluorence. Nucleic Acids Res 21:5085?5091. doi.org/10.1093/nar/21.22.5085

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nunn CM, Van Meervelt L, Zhang S et al (1991) DNA-drug interactions. The crystal structures of d(TGTACA) and d(TGATCA) complexed with daunomycin. J Mol Biol 222:167?177. doi.org/10.1016/0022-2836(91)90203-I

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erdem A, Meric B, Kerman K et al (1999) Detection of interaction between metal complex indicator and DNA by using electrochemical biosensor. Electroanal An Int J Devoted to Fundam Pract Asp Electroanal 11:1372?1376.

    CAS 

    Google Scholar
     

  • Purushothama HT, Nayaka YA, Vinay MM et al (2018) Pencil graphite electrode as an electrochemical sensor for the voltammetric determination of chlorpromazine. J Sci Adv Mater Devices 3:161?166. doi.org/10.1016/j.jsamd.2018.03.007

    Article 

    Google Scholar
     

  • Plambeck JA, William Lown J (1984) Electrochemical studies of antitumor antibiotics V. An electrochemical method of measurement of the binding of doxorubicin and daunorubicin derivatives to DNA. J Electrochem Soc 131:2556. doi.org/10.1149/1.2115358

    Article 
    CAS 

    Google Scholar
     

  • Fojta M, Doffková R, Paleček E (1996) Determination of traces of RNA in submicrogram amounts of single- or double-stranded DNAs by means of nucleic acid-modified electrodes. Electroanalysis 8:420?426. doi.org/10.1002/elan.1140080504

    Article 
    CAS 

    Google Scholar
     

  • Teijeiro C, Perez P, Marín D, Paleček E (1995) Cyclic voltammetry of mitomycin C and DNA. Bioelectrochem Bioenerg 38:77?83. doi.org/10.1016/0302-4598(95)01791-C

    Article 
    CAS 

    Google Scholar
     

  • Erdem A, Kerman K, Meric B et al (1999) DNA electrochemical biosensor for the detection of short DNA sequences related to the hepatitis B Virus.  Electroanal Int J devoted Fundam Pract Asp Electroanal 11:586?587.

    CAS 

    Google Scholar
     

  • Perry CM (1996) The Chemotherapy Source Book. William & Wilkins. Awaverly Company, USA p3-4, pp.19-20.

  • Di AM, Gaetani M, Scarpinato B (1969) Adriamycin (NSC-123,127): a new antibiotic with antitumor activity. Cancer Chemother reports 53:33?37


    Google Scholar
     

  • Kiyomiya KI, Matsuo S, Kurebe M (2001) Differences in intracellular sites of action of adriamycin in neoplastic and normal differentiated cells. Cancer Chemother Pharmacol 47:51?56. doi.org/10.1007/s002800000201

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou S, Starkov A, Froberg MK et al (2001) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61:771?777

    CAS 
    PubMed 

    Google Scholar
     

  • Minotti G (1999) Erratum: role of iron in anthracycline cardiotoxicity: new tunes for an old song? (FASEB Journal (199?212)). FASEB J 13:594. doi.org/10.1096/fasebj.13.3.594

    Article 
    CAS 

    Google Scholar
     

  • Kostoryz EL, Yourtee DM (2001) Oxidative mutagenesis of doxorubicin-Fe(III) complex. Mutat Res – Genet Toxicol Environ Mutagen 490:131?139. doi.org/10.1016/S1383-5718(00)00158-3

    Article 
    CAS 

    Google Scholar
     

  • David SS, Williams SD (1998) Chemistry of glycosylases and endonucleases involved in base-excision repair. Chem Rev 98:1221?1261. doi.org/10.1021/cr980321h

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pigram WJ, Fuller W and LDH (1972) Stereochemistry of intercalation: interaction of daunomycin with DNA. Nat New Biol 235:17?19

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berg H, Horn G, Luthardt U, Ihn W (1981) Interaction of anthracycline antibiotics with biopolymers: part V. Polarographic behavior and complexes with DNA. Bioelectrochem Bioenerg 8:537?553. doi.org/10.1016/S0022-0728(81)80246-X

    Article 
    CAS 

    Google Scholar
     

  • Frederick CA, Williams LD, Ughetto G et al (1990) Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry 29:2538?2549. doi.org/10.1021/bi00462a016

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lipscomb LA, Peek ME, Zhou FX et al (1994) Water Ring structure at DNA interfaces: Hydration and Dynamics of DNA-Anthracycline complexes. Biochemistry 33:3649?3659. doi.org/10.1021/bi00178a023

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zunino F, Gambetta R, Di Marco A et al (1977) The interaction of adriamycin and its beta anomer with DNA. Biochim Biophys Acta 476:38?46

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cullinane C, Phillips DR (1990) Induction of stable transcriptional blockage sites by adriamycin: GpC specificity of apparent adriamycin-DNA adducts and dependence on Iron(III) ions. Biochemistry 29:5638?5646. doi.org/10.1021/bi00475a032

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Ozsoz M, Cai X et al (1998) Interactions of antitumor drug daunomycin with DNA in solution and at the surface. Bioelectrochem Bioenerg. doi.org/10.1016/S0302-4598(98)00075-0

    Article 

    Google Scholar
     

  • Chehreh Chelgani S, Rudolph M, Kratzsch R et al (2016) A review of graphite beneficiation techniques. Min Process Extr Metall Rev 37:58?68. doi.org/10.1080/08827508.2015.1115992

    Article 
    CAS 

    Google Scholar
     

  • Alipour E, Majidi MR, Saadatirad A et al (2013) Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode. Electrochim Acta 91:36?42. doi.org/10.1016/j.electacta.2012.12.079

    Article 
    CAS 

    Google Scholar
     

  • Aoki K, Okamoto T, Kaneko H et al (1989) Applicability of graphite reinforcement carbon used as the lead of a mechanical pencil to voltammetric electrodes. J Electroanal Chem 263:323?331. doi.org/10.1016/0022-0728(89)85102-2

    Article 
    CAS 

    Google Scholar
     

  • Mirceski V, Gulaboski R, Lovric M et al (2013) Square-wave voltammetry: a review on the recent progress. Electroanalysis 25:2411?2422

    Article 
    CAS 

    Google Scholar
     

  • Alhadeff Eand Bojorge N (2011) ?Graphite-composites alternatives for electrochemical biosensor.? In metal, ceramic and polymeric composites for various uses. Intech Open, London


    Google Scholar
     

  • Tanzi MC, Farè S, Candiani G (2019) Chapter 1-Organization, structure, and properties of materials. Foundations of biomaterials engineering 10

  • David IG, Popa DE, Buleandra M (2017) Pencil graphite electrodes: a versatile tool in electroanalysis. J Anal Methods Chem. doi.org/10.1155/2017/1905968

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Congur G, Eksin E, Erdem A (2019) Sensing and bio-sensing research chitosan modified graphite electrodes developed for electrochemical monitoring of interaction between daunorubicin and DNA. Sens Bio-Sens Res 22:100255. doi.org/10.1016/j.sbsr.2018.100255

    Article 

    Google Scholar
     

  • Congur G, Eksin E, Mese F, Erdem A (2014) Sensors and actuators B: chemical succinamic acid functionalized PAMAM dendrimer modified pencil graphite electrodes for voltammetric and impedimetric DNA analysis. Sens Actuators B Chem 201:59?64. doi.org/10.1016/j.snb.2014.03.104

    Article 
    CAS 

    Google Scholar
     

  • Mehdi M, Jahani S (2022) Investigation of a high-sensitive electrochemical DNA biosensor for determination of Idarubicin and studies of DNA-binding properties. Microchem J 179:107546. doi.org/10.1016/j.microc.2022.107546

    Article 
    CAS 

    Google Scholar
     

  • Kuralay F, Bayramlı Y (2021) Electrochemical determination of Mitomycin C and its Interaction with double-stranded DNA using a poly (o -phenylenediamine) -Multi-Walled Carbon Nanotube Modified Pencil Graphite Electrode Electrochemical determination of Mitomycin C and. Anal Lett 54:1295?1308. doi.org/10.1080/00032719.2020.1801710

    Article 
    CAS 

    Google Scholar
     

  • Kesici E, Eksin E, Erdem A (2018) An impedimetric biosensor based on ionic liquid-modified graphite electrodes developed for microRNA-34a detection. Sens (Switzerland). doi.org/10.3390/s18092868

    Article 

    Google Scholar
     

  • Akpınar F, Şensoy KG, Muti M (2023) Electrochemical determination of dexrazoxane by Differential Pulse Voltammetry (DPV) using a Graphene Oxide Nanosheet Modified Pencil Graphite Electrode (PGE) Electrochemical determination of dexrazoxane by Differential Pulse Voltammetry (DPV) using a Graphene. Anal Lett 56:630?642. doi.org/10.1080/00032719.2022.2095567

    Article 
    CAS 

    Google Scholar
     

  • Moustakim H, Mohammadi H, Amine A (2022) Electrochemical DNA Biosensor Based on Immobilization of a Non-Modified ssDNA Using Phosphoramidate-Bonding Strategy and Pencil Graphite Electrode Modified with AuNPs/CB and Self-Assembled Cysteamine Monolayer. Sensors 22(23):9420

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nohwal B, Chaudhary R, Pundir CS (2020) Amperometric L -lysine determination biosensor ampli fi ed with L -lysine oxidase nanoparticles and graphene oxide nanoparticles. Process Biochem 97:57?63. doi.org/10.1016/j.procbio.2020.06.011

    Article 
    CAS 

    Google Scholar
     

  • Jahandari S, Ali M, Karimi-maleh H, Khodadadi A (2019) A powerful DNA-based voltammetric biosensor modified with au nanoparticles, for the determination of Temodal ; an electrochemical and docking investigation. J Electroanal Chem 840:313?318. doi.org/10.1016/j.jelechem.2019.03.049

    Article 
    CAS 

    Google Scholar
     

  • Muti M, Muti M (2018) Electrochemical monitoring of the interaction between anticancer drug and DNA in the presence of antioxidant. Talanta 178:1033?1039. doi.org/10.1016/j.talanta.2017.08.089

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tugce Y, Akbal Ö, Bolat G et al (2018) Biosensors and bioelectronics peptide nanoparticles (PNPs) modi fi ed disposable platform for sensitive electrochemical cytosensing of DLD-1 cancer cells. Biosens Bioelectron 104:50?57. doi.org/10.1016/j.bios.2017.12.039

    Article 
    CAS 

    Google Scholar
     

  • Kanat E, Eksin E, Karacicek B, Erac Y (2018) Electrochemical detection of interaction between dacarbazine and nucleic acids in comparison to agarose gel electrophoresis. Anal Biochem. doi.org/10.1002/elan.201800064

    Article 

    Google Scholar
     

  • Heydari-bafrooei E, Amini M, Saeednia S (2017) Electrochemical detection of DNA damage induced by bleomycin in the presence of metal ions. J Electroanal Chem 803:104?110. doi.org/10.1016/j.jelechem.2017.09.031

    Article 
    CAS 

    Google Scholar
     

  • Taei M, Salavati H, Hasanpour F, Shafiei A (2015) Biosensor based on ds-DNA-decorated Fe 2 O 3/SnO 2-chitosan modified multiwalled carbon nanotubes for biodetection of doxorubicin. IEEE Sensors Journal 16(1):24–31

    Article 

    Google Scholar
     

  • Zhao J, Hu GZ, Yang ZS, Zhou YY (2007) Determination of 1-naphthol with denatured DNA-modified pretreated glassy carbon electrode. Anal Lett 40:459?470. doi.org/10.1080/00032710600964759

    Article 
    CAS 

    Google Scholar
     

  • Topkaya SN, Ozyurt VH, Cetin AE, Otles S (2018) Nitration of tyrosine and its effect on DNA hybridization. Biosens Bioelectron 102:464?469. doi.org/10.1016/j.bios.2017.11.061

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erdem A, Muti M, Papakonstantinou P et al (2012) Graphene oxide integrated sensor for electrochemical monitoring of mitomycin C-DNA interaction. Analyst 137:2129?2135. doi.org/10.1039/c2an16011k

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliveira-Brett AM, Vivan M, Fernandes IR, Piedade JAP (2002) Electrochemical detection of in situ adriamycin oxidative damage to DNA. Talanta 56:959?970. doi.org/10.1016/S0039-9140(01)00656-7

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erdem A, Karadeniz H, Caliskan A (2009) Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions. An Int J Devoted to Fundam Pract Asp Electroanal 21:464?471. doi.org/10.1002/elan.200804422

    Article 
    CAS 

    Google Scholar
     

  • Vacek J (2009) Ex situ voltammetry and chronopotentiometry of Doxorubicin at a pyrolytic Graphite Electrode: Redox and Catalytic Properties and Analytical Applications. Electroanal An Int J Devoted to Fundam Pract Asp Electroanal 21:2139?2144. doi.org/10.1002/elan.200904646

    Article 
    CAS 

    Google Scholar
     

  • Hynek D, Krejcova L, Zitka O et al (2012) Electrochemical study of doxorubicin interaction with different sequences of double stranded oligonucleotides, part II. Int J Electrochem Sci 7:34?49

    CAS 

    Google Scholar
     

  • Wong ELS, Gooding JJ (2007) The Electrochemical monitoring of the perturbation of charge transfer through DNA by Cisplatin. J Am Chem Soc 129:8950?8951

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hmoud Alotaibi S, Abdalla Momen A (2019) Anticancer drugs? deoxyribonucleic acid (DNA) interactions. Biophys Chem – Adv Appl. doi.org/10.5772/intechopen.85794

    Article 

    Google Scholar
     

  • Pwavodi PC, Ozyurt VH, Asir S, Ozsoz M (2021) Electrochemical sensor for determination of various phenolic compounds in wine samples using Fe3O4 nanoparticles modified carbon paste electrode. Micromachines 12(3):312

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eksin E, Karadeniz H, Erdem A (2015) Voltammetric and impidimetric detection of Anticancer Drug Mitomycin C and DNA Interaction by using Carbon Nanotubes Modified Electrodes. Curr Bionanotechnol 1:32?36. doi.org/10.2174/2213529401666150218194827

    Article 

    Google Scholar
     

  • Zhang K YZ (2010) Electrochemical behavior of adriamycin at an electrode modified with silver nanoparticles and multi-walled carbon nanotubes, and its application. Microchim Acta 169:161?165

    Article 
    CAS 

    Google Scholar
     

  • Soleymani J, Hasanzadeh M, shadjou N, Jafari MK, Gharamaleki JV, AJ (2016) A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mat Sci Eng C 61:638?650

    Article 
    CAS 

    Google Scholar
     

  • Chaney EN RPB (1982) Electrochemical determination of adriamycin compounds in urine by preconcentration at carbon paste electrodes. Anal Chem 54:2556?2560

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baldwin RP, Packett D TMW (1981) Electrochemical behavior of adriamycin at carbon paste electrodes. Anal Chem 53:540?542

    Article 
    CAS 

    Google Scholar
     

  • Evtugyn G, Porfireva A, Stepanova V HB (2015) Electrochemical Biosensors based on native DNA and Nanosized Mediator for the detection of Anthracycline Preparations. Electroanalysis 27:629?637

    Article 
    CAS 

    Google Scholar
     

  • Hashemzadeh N, Hasanzadeh M, Shadjou N, Eivazi-Ziaei J, Khoubnasabjafari M AJ (2016) Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma. J Pharm Anal 6:235?241

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hajian R, Tayebi Z, Shams N (2017) Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA. J Pharm Anal 7:27?33. doi.org/10.1016/j.jpha.2016.07.005

    Article 
    PubMed 

    Google Scholar
     

  • Read more here: Source link