DNMT1 mutant ants develop normally but have disrupted oogenesis

  • Allis, C. D. et al. Epigenetics 2nd edn (Cold Spring Harbor Laboratory Press, 2015).

  • Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, S. et al. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl. Acad. Sci. U.S.A. 107, 8689–8694 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bewick, A. J., Vogel, K. J., Moore, A. J. & Schmitz, R. J. Evolution of DNA methylation across insects. Mol. Biol. Evol. 34, 654-665 (2017).

  • Bewick, A. J. et al. On the origin and evolutionary consequences of gene body DNA methylation. Proc. Natl. Acad. Sci. U.S.A. 113, 9111–9116 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, H. et al. DNA methylation in social insects: how epigenetics can control behavior and longevity. Annu. Rev. Entomol. 60, 435–452 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Razin, A. & Riggs, A. DNA methylation and gene function. Science 210, 604–610 (1980).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Edwards, J. R., Yarychkivska, O., Boulard, M. & Bestor, T. H. DNA methylation and DNA methyltransferases. Epigenetics Chromatin 10, 23 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmitz, R. J., Lewis, Z. A. & Goll, M. G. DNA methylation: shared and divergent features across eukaryotes. Trends Genet. 35, 818–827 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonasio, R. et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr. Biol. 22, 1755–1764 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Libbrecht, R., Oxley, P. R., Keller, L. & Kronauer, D. J. C. Robust DNA methylation in the clonal raider ant brain. Curr. Biol. 26, 391–395 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Functional CpG methylation system in a social insect. Science 314, 645–647 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schaefer, M. & Lyko, F. DNA methylation with a sting: an active DNA methylation system in the honeybee. Bioessays 29, 208–211 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Bonasio, R. The expanding epigenetic landscape of non-model organisms. J. Exp. Biol. 218, 114–122 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drewell, R. A., Lo, N., Oxley, P. R. & Oldroyd, B. P. Kin conflict in insect societies: a new epigenetic perspective. Trends Ecol. Evol. 27, 367–373 (2012).

    PubMed 

    Google Scholar
     

  • Glastad, K. M., Hunt, B. G., Yi, S. V. & Goodisman, M. A. D. DNA methylation in insects: on the brink of the epigenomic era. Insect Mol. Biol. 20, 553–565 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Glastad, K. M., Chau, L. M. & Goodisman, M. A. D. in Advances in Insect Physiology Vol. 48, (eds Zayed, A. & Kent, C. F.) 227–269 (Elsevier, 2015).

  • Li-Byarlay, H. The function of DNA methylation marks in social insects. Front. Ecol. Evol. 4, (2016).

  • Lyko, F. & Maleszka, R. Insects as innovative models for functional studies of DNA methylation. Trends Genet. 27, 127–131 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Maleszka, R. Epigenetic code and insect behavioural plasticity. Curr. Opin. Insect Sci. 15, 45–52 (2016).

    PubMed 

    Google Scholar
     

  • Patalano, S., Hore, T. A., Reik, W. & Sumner, S. Shifting behaviour: epigenetic reprogramming in eusocial insects. Curr. Opin. Cell Biol. 24, 367–373 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Weiner, S. A. & Toth, A. L. Epigenetics in social insects: a new direction for understanding the evolution of castes. Genet. Res. Int. 2012, 609810 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Welch, M. & Lister, R. Epigenomics and the control of fate, form and function in social insects. Curr. Opin. Insect Sci. 1, 31–38 (2014).

    PubMed 

    Google Scholar
     

  • Yan, H. et al. Eusocial insects as emerging models for behavioural epigenetics. Nat. Rev. Genet. 15, 677–688 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Maleszka, R. Epigenetic integration of environmental and genomic signals in honey bees: the critical interplay of nutritional, brain and reproductive networks. Epigenetics 3, 188–192 (2008).

    PubMed 

    Google Scholar
     

  • Vaiserman, A. Developmental epigenetic programming of caste-specific differences in social insects: an impact on longevity. Curr. Aging Sci. 7, 176–186 (2014).


    Google Scholar
     

  • Patalano, S. et al. Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. Proc. Natl. Acad. Sci. U.S.A. 112, 13970–13975 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lattorff, H. M. G. & Moritz, R. F. A. Genetic underpinnings of division of labor in the honeybee (Apis mellifera). Trends Genet. 29, 641–648 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Opachaloemphan, C., Yan, H., Leibholz, A., Desplan, C. & Reinberg, D. Recent advances in behavioral (epi)genetics in eusocial insects. Annu. Rev. Genet. 52, 489–510 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alaux, C. et al. Honey bee aggression supports a link between gene regulation and behavioral evolution. Proc. Natl. Acad. Sci. U.S.A. 106, 15400–15405 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lonsdale, Z. et al. Allele specific expression and methylation in the bumblebee, Bombus terrestris. PeerJ 5, e3798 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elango, N., Hunt, B. G., Goodisman, M. A. D. & Yi, S. V. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc. Natl. Acad. Sci. U.S.A. 106, 11206–11211 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lyko, F. et al. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol. 8, e1000506 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarado, S., Rajakumar, R., Abouheif, E. & Szyf, M. Epigenetic variation in the Egfr gene generates quantitative variation in a complex trait in ants. Nat. Commun. 6, 6513 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kucharski, R., Maleszka, J., Foret, S. & Maleszka, R. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 1827–1830 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li-Byarlay, H. et al. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc. Natl. Acad. Sci. U.S.A. 110, 12750–12755 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herb, B. R. et al. Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat. Neurosci. 15, 1371–1373 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunt, B. G., Glastad, K. M., Yi, S. V. & Goodisman, M. A. D. Patterning and regulatory associations of DNA methylation are mirrored by histone modifications in insects. Genome Biol. Evol. 5, 591–598 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunt, B. G., Glastad, K. M., Yi, S. V. & Goodisman, M. A. D. The function of intragenic DNA methylation: insights from insect epigenomes. Integr. Comp. Biol. 53, 319–328 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Sarda, S., Zeng, J., Hunt, B. G. & Yi, S. V. The evolution of invertebrate gene body methylation. Mol. Biol. Evol. 29, 1907–1916 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Kronauer, D. J. C., Pierce, N. E. & Keller, L. Asexual reproduction in introduced and native populations of the ant Cerapachys biroi. Mol. Ecol. 21, 5221–5235 (2012).

    PubMed 

    Google Scholar
     

  • Oxley, P. R. et al. The genome of the clonal raider ant Cerapachys biroi. Curr. Biol. 24, 451–458 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trible, W. et al. orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell 170, 727–735.e10 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravary, F. & Jaisson, P. Absence of individual sterility in thelytokous colonies of the ant Cerapachys biroi Forel (Formicidae, Cerapachyinae). Insectes Soc. 51, 67–73 (2004).


    Google Scholar
     

  • Teseo, S., Châline, N., Jaisson, P. & Kronauer, D. J. C. Epistasis between adults and larvae underlies caste fate and fitness in a clonal ant. Nat. Commun. 5, 3363 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Arsala, D., Wu, X., Yi, S. V. & Lynch, J. A. Dnmt1a is essential for gene body methylation and the regulation of the zygotic genome in a wasp. PLoS Genet. 18, e1010181 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bewick, A. J. et al. Dnmt1 is essential for egg production and embryo viability in the large milkweed bug, Oncopeltus fasciatus. Epigenetics Chromatin 12, 6 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulz, N. K. E. et al. Dnmt1 has an essential function despite the absence of CpG DNA methylation in the red flour beetle Tribolium castaneum. Sci. Rep. 8, 16462 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ventós-Alfonso, A., Ylla, G., Montañes, J.-C. & Belles, X. DNMT1 promotes genome methylation and early embryo development in cockroaches. iScience 23, 101778 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Washington, J. T. et al. The essential role of Dnmt1 in gametogenesis in the large milkweed bug Oncopeltus fasciatus. eLife 10, e62202 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Damelin, M. & Bestor, T. H. Biological functions of DNA methyltransferase 1 require its methyltransferase activity. Mol. Cell. Biol. 27, 3891–3899 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q. et al. CRISPR-Cas9 gene editing causes alternative splicing of the targeting mRNA. Biochem. Biophys. Res. Commun. 528, 54–61 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smits, A. H. et al. Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods 16, 1087–1093 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, E. & Zhang, Y. DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 6, a019133–a019133 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, K. D. & Robertson, K. D. DNMT1 knockout delivers a strong blow to genome stability and cell viability. Nat. Genet. 39, 289–290 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Unterberger, A., Andrews, S. D., Weaver, I. C. G. & Szyf, M. DNA methyltransferase 1 knockdown activates a replication stress checkpoint. Mol. Cell. Biol. 26, 7575–7586 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Dearden, P. Germ cell development in the honeybee (Apis mellifera); Vasa and Nanos expression. BMC Dev. Biol. 6, 6 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kay, S., Skowronski, D. & Hunt, B. G. Developmental DNA methyltransferase expression in the fire ant Solenopsis invicta. Insect Sci. 25, 57–65 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Amukamara, A. U. et al. More than DNA methylation: does pleiotropy drive the complex pattern of evolution of Dnmt1? Front. Ecol. Evol. 8, 4 (2020).


    Google Scholar
     

  • Dunican, D. S., Ruzov, A., Hackett, J. A. & Meehan, R. R. xDnmt1 regulates transcriptional silencing in pre-MBT Xenopus embryos independently of its catalytic function. Development 135, 1295–1302 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Bhattacharyya, M., De, S. & Chakrabarti, S. Origin and evolution of DNA methyltransferases (DNMT) along the tree of life: a multi-genome survey. doi.org/10.1101/2020.04.09.033167 (2020).

  • Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Fetter-Pruneda, I. et al. An oxytocin/vasopressin-related neuropeptide modulates social foraging behavior in the clonal raider ant. PLoS Biol. 19, e3001305 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475–483 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schultz, M. D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenzie, S. K. & Kronauer, D. J. C. The genomic architecture and molecular evolution of ant odorant receptors. Genome Res. 28, 1757–1765 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link