Association of 410L, 1016I and 1534C kdr mutations with pyrethroid resistance in Aedes aegypti from Ouagadougou, Burkina Faso, and development of a one-step multiplex PCR method for the simultaneous detection of 1534C and 1016I kdr mutations | Parasites & Vectors

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7. doi.org/10.1038/nature12060.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. WHO | Dengue Fever – Burkina Faso. World Health Organization 2017 www.who.int/emergencies/disease-outbreak-news/item/6-november-2017-dengue-burkina-faso-en; 2017.

  • Tarnagda Z, Cissé A, Bicaba BW, Diagbouga S, Sagna T, Ilboudo AK, et al. Dengue fever in Burkina Faso, 2016. Emerg Infect Dis. 2018;24:170–2. doi.org/10.3201/eid2401.170973.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weetman D, Kamgang B, Badolo A, Moyes C, Shearer F, Coulibaly M, et al. Aedes mosquitoes and Aedes-borne arboviruses in africa: current and future threats. Int J Environ Res Public Health. 2018;15:220. doi.org/10.3390/ijerph15020220.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badolo A, Sombié A, Yaméogo F, Wangrawa DW, Sanon A, Pignatelli PM, et al. First comprehensive analysis of Aedes aegypti bionomics during an arbovirus outbreak in West Africa: dengue in Ouagadougou, Burkina Faso, 2016–2017. PLoS Negl Trop Dis. 2022;16:e0010059. doi.org/10.1371/journal.pntd.0010059.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonnet E, Fournet F, Benmarhnia T, Ouedraogo S, Dabiré R, Ridde V. Impact of a community-based intervention on Aedes aegypti and its spatial distribution in Ouagadougou. Burkina Faso Infect Dis Poverty. 2020;9:61. doi.org/10.1186/s40249-020-00675-6.

    Article 
    PubMed 

    Google Scholar
     

  • Teresa L, Tura B, Santos M. Systematic review of dengue vaccine efficacy. BMC Infect Dis. 2019;19:750.

    Article 

    Google Scholar
     

  • Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11:e0005625. doi.org/10.1371/journal.pntd.0005625.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gan SJ, Leong YQ, Fakrul M, Wong ST, Wong SF, Mak JW, et al. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia : a review. Parasit Vectors. 2021;14:315. doi.org/10.1186/s13071-021-04785-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cosme LV, Gloria-soria A, Caccone A, Powell R, Martins JA. Evolution of kdr haplotypes in worldwide populations of Aedes aegypti: independent origins of the F1534C kdr mutation. PLoS Negl Trop Dis. 2020;14:e0008219. doi.org/10.1371/journal.pntd.0008219.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawada H, Higa Y, Futami K, Muranami Y, Kawashima E, Osei JHN, et al. Discovery of point mutations in the voltage-gated sodium channel from african Aedes aegypti populations: potential phylogenetic reasons for gene introgression. PLoS Negl Trop Dis. 2016;10:e0004780. doi.org/10.1371/journal.pntd.0004780.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sombié A, Saiki E, Yaméogo F, Sakurai T, Shirozu T, Fukumoto S, et al. High frequencies of F1534C and V1016I kdr mutations and association with pyrethroid resistance in Aedes aegypti from Somgandé (Ouagadougou) Burkina Faso. Trop Med Health. 2019;47:2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saavedra-Rodriguez K, Maloof FV, Campbell CL, Garcia-rejon J, Lenhart A, Penilla P, et al. Parallel evolution of vgsc mutations at domains IS6, IIS6 and IIIS6 in pyrethroid resistant Aedes aegypti from Mexico. Sci Rep. 2018;8:6747. doi.org/10.1038/s41598-018-25222-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung H, Cheng I, Chen Y, Lin C, Tomita T, Teng Hwa-Jen. Voltage-gated sodium channel intron polymorphism and four mutations comprise six haplotypes in an Aedes aegypti population in Taiwan. PLoS Negl Trop Dis. 2019. doi.org/10.1371/journal.pntd.0007291.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haddi K, Tomé HVV, Du Y, Valbon WR, Nomura Y, Martins GF, et al. Detection of a new pyrethroid resistance mutation (V410L) in the sodium channel of Aedes aegypti : a potential challenge for mosquito control. Nat Publ Gr. 2017;7:46549. doi.org/10.1038/srep46549.

    Article 
    CAS 

    Google Scholar
     

  • Granada Y, Mar A, Strode C, Triana-chavez O. A point mutation V419L in the sodium channel gene from natural populations of Aedes aegypti is involved in resistance to λ—cyhalothrin in Colombia. Insects. 2018;9:23. doi.org/10.3390/insects9010023.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villanueva-segura OK, Ontiveros-zapata KA, Lopez-monroy B, Ponce-garcia G, Gutierrez-rodriguez SM, Davila-barboza JA, et al. Distribution and frequency of the kdr mutation V410L in natural populations of Aedes aegypti (L.) (Diptera : Culicidae) from Eastern and Southern Mexico. J Med Entomol. 2019. doi.org/10.1093/jme/tjz148.

    Article 

    Google Scholar
     

  • Ayres CFJ, Seixas G, Borrego S, Marques C, Monteiro I, Marques CS, et al. The V410L knockdown resistance mutation occurs in island and continental populations of Aedes aegypti in West and Central Africa. PLoS Negl Trop Dis. 2020;14:e0008216. doi.org/10.1371/journal.pntd.0008216.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toé HK, Zongo S, Guelbeogo MW, Kamgang B, Viana M, Tapsoba M, et al. Multiple insecticide resistance and first evidence of V410L kdr mutation in Aedes (Stegomyia) aegypti (Linnaeus) from Burkina Faso. Med Vet Entomol. 2022. doi.org/10.1111/mve.12602.

    Article 
    PubMed 

    Google Scholar
     

  • Hirata K, Komagata O, Itokawa K, Yamamoto A, Tomita T. A single crossing-over event in voltage-sensitive Na+ channel genes may cause critical failure of dengue mosquito control by insecticides. PLoS Negl Trop Dis. 2014;8:e3085. doi.org/10.1371/journal.pntd.0003085.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen M, Du Y, Wu S, Nomura Y, Zhu G, Zhorov BS, et al. Molecular evidence of sequential evolution of DDT- and pyrethroid-resistant sodium channel in Aedes aegypti. PLoS Negl Trop Dis. 2019;13:e0007432. doi.org/10.1371/journal.pntd.0007432.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brogdon W, Chan A. Guideline for evaluating insecticide resistance in vectors using the CDC bottle bioassay. Stacks_Public, Atlanta: CDC Publications; 2010.

  • WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. World Heal Organ 2016:55p. doi:ISBN 978 92 4 151157 5.

  • Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18:265–7.

    Article 
    CAS 

    Google Scholar
     

  • Badolo A, Sombié A, Pignatelli PM, Sanon A, Yaméogo F, Wangrawa DW, et al. Insecticide resistance levels and mechanisms in Aedes aegypti populations in and around Ouagadougou Burkina Faso. PLoS Negl Trop Dis. 2019;13:e0007439. doi.org/10.1371/journal.pntd.0007439.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saingamsook J, Saeung A, Yanola J, Lumjuan N, Walton C, Somboon P. A multiplex PCR for detection of knockdown resistance mutations, V1016G and F1534C, in pyrethroid-resistant Aedes aegypti. Parasit Vectors. 2017;10:465. doi.org/10.1186/s13071-017-2416-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores AE, Fernandez- Salas I, et al. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol. 2007;16:785–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nazawi AAM, Aqili J, Alzahrani M, McCall PJ, Weetman D. Combined target site (kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia. Parasit Vectors. 2017;10:161. doi.org/10.1186/s13071-017-2096-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. Standard operating procedure for testing insecticide susceptibility of adult mosquitoes in WHO bottle bioassays. World Heal Organ 2022:25p.

  • WHO. Standard operating procedure for testing insecticide susceptibility of adult mosquitoes in WHO tube tests. World Heal Organ 2022:20p.

  • R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.


    Google Scholar
     

  • Ouattara LPE, Sangaré I, Namountougou M, Hien A, Ouari A, Soma DD, et al. Surveys of arboviruses vectors in four cities stretching along a railway transect of Burkina Faso : risk transmission and insecticide susceptibility status of potential vectors. Front Vet Sci. 2019;6:140. doi.org/10.3389/fvets.2019.00140.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sene NM, Mavridis K, Ndiaye EH, Diagne C, Gaye A, Ngom EHM, et al. Insecticide resistance status and mechanisms in Aedes aegypti populations from Senegal. PLoS Negl Trop Dis. 2021;15:e0009393. doi.org/10.1371/journal.pntd.0009393.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed RMH, Hassan SM. Susceptibility Aedes aegypti to malathion and permethrin Insecticides in Kassala City Sudan. Eur Acad Res. 2019;6:5949–64.


    Google Scholar
     

  • Konan LY, Oumbouke WA, Silué UG, Coulibaly IZ, Ziogba JT, Guessan RKN, et al. Insecticide resistance patterns and mechanisms in Aedes aegypti (Diptera: Culicidae) populations across Abidjan, Côte d’Ivoire reveal emergent pyrethroid resistance. J Med Entomol. 2021. doi.org/10.1093/jme/tjab045.

    Article 
    PubMed 

    Google Scholar
     

  • Francis S, Campbell T, McKenzie S, Wright D, Crawford J, Hamilton T, et al. Screening of insecticide resistance in Aedes aegypti populations collected from parishes in Eastern Jamaica. PLoS Negl Trop Dis. 2020;14:e0008490. doi.org/10.1371/journal.pntd.0008490.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcombe S, Fustec B, Cattel J, Chonephetsarath S, Thammavong P, Phommavanh N, et al. Distribution of insecticide resistance and mechanisms involved in the arbovirus vector Aedes aegypti in laos and implication for vector control. PLoS Negl Trop Dis. 2019;13:e0007852. doi.org/10.1371/JOURNAL.PNTD.0007852.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amlalo GK, Akorli J, Akyea-Bobi NE, Akporh SS, Aqua-Baidoo D, Opoku M, et al. Evidence of high frequencies of insecticide resistance mutations in Aedes aegypti (Culicidae) mosquitoes in urban Accra, Ghana : implications for insecticide-based vector control of Aedes-borne arboviral diseases. J Med Entomol. 2022. doi.org/10.1093/jme/tjac120.

    Article 

    Google Scholar
     

  • Lenhart A, Orelus N, Maskill R, Alexander N, Streit T, McCall PJ. Insecticide-treated bednets to control dengue vectors: Preliminary evidence from a controlled trial in Haiti. Trop Med Int Heal. 2008;13:56–67. doi.org/10.1111/j.1365-3156.2007.01966.x.

    Article 

    Google Scholar
     

  • Bocoum FY, Belemsaga D, Adjagba A, Walker D, Kouanda S, Tinto H. Malaria prevention measures in Burkina Faso : distribution and households expenditures. Int J Equity Health. 2014;13:108. doi.org/10.1186/s12939-014-0108-0.

    Article 
    PubMed 

    Google Scholar
     

  • Baltzegar J, Vella M, Gunning C, Vasquez G, Astete H, Stell F, et al. Rapid evolution of knockdown resistance haplotypes in response to pyrethroid selection in Aedes aegypti. Evol Appl. 2021;14:2098–113. doi.org/10.1111/eva.13269.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernandez JR, Liu S, Fredregill CL, Pietrantonio PV. Impact of the V410L kdr mutation and co- occurring genotypes at kdr sites 1016 and 1534 in the VGSC on the probability of survival of the mosquito Aedes aegypti (L.) to Permanone in Harris County, TX, USA. PLoS Negl Trop Dis. 2023;17:e0011033. doi.org/10.1371/journal.pntd.0011033.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Achee NL, Grieco JP, Vatandoost H, Seixas G, Pinto J, Ching-Ng L, et al. Alternative strategies for mosquito-borne arbovirus control. PLoS Negl Trop Dis. 2019;13:e0006822. doi.org/10.1371/journal.pntd.0006822.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E, Ansari MR, et al. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N Engl J Med. 2021;384:2177–86. doi.org/10.1056/nejmoa2030243.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson MAE, Gonzalez E, Edgington MP, Ang JXD, Purusothaman D-K, Shackleford L, et al. A multiplexed, confinable CRISPR/Cas9 gene drive propagates in caged Aedes aegypti. BioRxiv. 2022. doi.org/10.1101/2022.08.12.503466.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link