Assessing the biogeography of marine giant viruses in four oceanic transects

  • Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, et al. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev. 2020;84:e00061–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilhelm S, Bird J, Bonifer K, Calfee B, Chen T, Coy S, et al. A student’s guide to giant viruses infecting small eukaryotes: from acanthamoeba to zooxanthellae. Viruses. 2017;9:46.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer MG. Giant viruses come of age. Curr Opin Microbiol. 2016;31:50–57.

    Article 
    PubMed 

    Google Scholar
     

  • Aylward FO, Moniruzzaman M. Viral complexity. Biomolecules. 2022;12:1061.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aylward FO, Moniruzzaman M, Ha AD, Koonin EV. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLoS Biol. 2021;19:e3001430.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moniruzzaman M, Weinheimer AR, Martinez-Gutierrez CA, Aylward FO. Widespread endogenization of giant viruses shapes genomes of green algae. Nature. 2020;588:141–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guglielmini J, Woo AC, Krupovic M, Forterre P, Gaia M. Diversification of giant and large eukaryotic dsDNA viruses predated the origin of modern eukaryotes. Proc Natl Acad Sci USA. 2019;116:19585–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanc-Mathieu R, Dahle H, Hofgaard A, Brandt D, Ban H, Kalinowski J, et al. A persistent giant algal virus, with a unique morphology, encodes an unprecedented number of genes involved in energy metabolism. J Virol. 2021;95:e02446–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moniruzzaman M, Martinez-Gutierrez CA, Weinheimer AR, Aylward FO. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat Commun. 2020;11:1710.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigues RAL, Arantes TS, Oliveira GP, Dos Santos Silva LK, Abrahão JS. The complex nature of tupanviruses. Adv Virus Res. 2019;103:135–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreau H, Piganeau G, Desdevises Y, Cooke R, Derelle E, Grimsley N. Marine prasinovirus genomes show low evolutionary divergence and acquisition of protein metabolism genes by horizontal gene transfer. J Virol. 2010;84:12555–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ha AD, Moniruzzaman M, Aylward FO. High transcriptional activity and diverse functional repertoires of hundreds of giant viruses in a coastal marine system. mSystems. 2021;6:e0029321.

    Article 
    PubMed 

    Google Scholar
     

  • Yutin N, Koonin EV. Proteorhodopsin genes in giant viruses. Biol Direct. 2012;7:34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rozenberg A, Oppermann J, Wietek J, Fernandez Lahore RG, Sandaa R-A, Bratbak G, et al. Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses. Curr Biol. 2020;30:4910–4920.e5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Needham DM, Yoshizawa S, Hosaka T, Poirier C, Choi CJ, Hehenberger E, et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc Natl Acad Sci. 2019;116:20574–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koonin EV, Yutin N. Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Adv Virus Res. 2019;103:167–202.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karki S, Moniruzzaman M, Aylward FO. Comparative genomics and environmental distribution of large dsDNA viruses in the family asfarviridae. Fronti Microbiol.

  • Weynberg KD, Allen MJ, Wilson WH. Marine prasinoviruses and their tiny plankton hosts: a review. Viruses. 2017;9.

  • Claverie J-M, Abergel C. Mimiviridae: an expanding family of highly diverse large dsDNA viruses infecting a wide phylogenetic range of aquatic eukaryotes. Viruses. 2018;10:506.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenwasser S, Ziv C, van Creveld SG, Vardi A. Virocell metabolism: metabolic innovations during host–virus interactions in the ocean. Trends Microbiol. 821-32.

  • Forterre P. Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C R Chim. 2011;14:392–9.

    Article 
    CAS 

    Google Scholar
     

  • Chen F, Suttle CA, Short SM. Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. Appl Environ Microbiol. 1996;62:2869–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Short SM, Suttle CA. Sequence analysis of marine virus communities reveals that groups of related algal viruses are widely distributed in nature. Appl Environ Microbiol. 2002;68:1290–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monier A, Larsen JB, Sandaa R-A, Bratbak G, Claverie J-M, Ogata H. Marine mimivirus relatives are probably large algal viruses. Virol J. 2008;5:12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monier A, Claverie J-M, Ogata H. Taxonomic distribution of large DNA viruses in the sea. Genome Biol. 2008;9:R106.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Endo H, Blanc-Mathieu R, Li Y, Salazar G, Henry N, Labadie K, et al. Biogeography of marine giant viruses reveals their interplay with eukaryotes and ecological functions. Nat Ecol Evol. 2020;4:1639–49.

    Article 
    PubMed 

    Google Scholar
     

  • Bellec L, Grimsley N, Derelle E, Moreau H, Desdevises Y. Abundance, spatial distribution and genetic diversity of Ostreococcus tauri viruses in two different environments. Environ Microbiol Rep. 2010;2:313–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hingamp P, Grimsley N, Acinas SG, Clerissi C, Subirana L, Poulain J, et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 2013;7:1678–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorensen G, Baker AC, Hall MJ, Munn CB, Schroeder DC. Novel virus dynamics in an Emiliania huxleyi bloom. Journal of Plankton Research. 2009;31:787–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson WH, Tarran GA, Schroeder D, Cox M, Oke J, Malin G. Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. J Marine Biol Assoc United Kingdom. 2002;82:369–77.

    Article 

    Google Scholar
     

  • Lehahn Y, Koren I, Schatz D, Frada M, Sheyn U, Boss E, et al. Decoupling physical from biological processes to assess the impact of viruses on a mesoscale algal bloom. Curr Biol. 2014;24:2041–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tarutani K, Nagasaki K, Yamaguchi M. Viral impacts on total abundance and clonal composition of the harmful bloom-forming phytoplankton Heterosigma akashiwo. Appl Environ Microbiol. 2000;66:4916–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandaa RA, Heldal M, Castberg T, Thyrhaug R, Bratbak G. Isolation and characterization of two viruses with large genome size infecting Chrysochromulina ericina (Prymnesiophyceae) and Pyramimonas orientalis (Prasinophyceae). Virology. 2001;290:272–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brussaard CP, Short SM, Frederickson CM, Suttle CA. Isolation and phylogenetic analysis of novel viruses infecting the phytoplankton Phaeocystis globosa (Prymnesiophyceae). Appl Environ Microbiol. 2004;70:3700–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaneko H, Blanc-Mathieu R, Endo H, Chaffron S, Delmont TO, Gaia M, et al. Eukaryotic virus composition can predict the efficiency of carbon export in the global ocean. iScience. 2020;24:102002.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laber CP, Hunter JE, Carvalho F, Collins JR, Hunter EJ, Schieler BM, et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat Microbiol. 2018;3:537–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kavagutti VS, Bulzu P-A, Chiriac CM, Salcher MM, Mukherjee I, Shabarova T, et al. High-resolution metagenomic reconstruction of the freshwater spring bloom. Microbiome. 2023;11:1–24.

    Article 

    Google Scholar
     

  • Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F. Laboratory procedures to generate viral metagenomes. Nat Protoc. 2009;4:470–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA, Denef VJ, et al. Giant virus diversity and host interactions through global metagenomics. Nature. 2020;578:432–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bäckström D, Yutin N, Jørgensen SL, Dharamshi J, Homa F, Zaremba-Niedwiedzka K, et al. Virus Genomes from Deep Sea Sediments Expand the Ocean Megavirome and Support Independent Origins of Viral Gigantism. MBio. 2019;10:e02497–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaïa M, Meng L, Pelletier E, Forterre P, Vanni C, Fernandez-Guerra A, et al. Mirusviruses link herpesviruses to giant viruses. Nature. 2023. doi.org/10.1038/s41586-023-05962-4

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, et al. Marine microbial metagenomes sampled across space and time. Scientific Data. 2018;5:1–7.

    Article 

    Google Scholar
     

  • Chow CET, Suttle CA. Biogeography of Viruses in the Sea. Annu Rev Virol. 2015;2:41–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Endo H, Ogata H, Suzuki K. Contrasting biogeography and diversity patterns between diatoms and haptophytes in the central Pacific Ocean. Sci Rep. 2018;8:1–13.

    Article 

    Google Scholar
     

  • Sow SLS, Trull TW, Bodrossy L. Oceanographic fronts shape phaeocystis assemblages: a high-resolution 18S rRNA gene survey from the ice-edge to the equator of the South Pacific. Front Microbiol. 2020;11:1847.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schvarcz CR, Steward GF. A giant virus infecting green algae encodes key fermentation genes. Virology. 2018;518:423–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chelkha N, Levasseur A, Pontarotti P, Raoult D, Scola BL, Colson P. A Phylogenomic study of acanthamoeba polyphaga draft genome sequences suggests genetic exchanges with giant viruses. Front Microbiol. 2018;9:2098.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fischer MG, Allen MJ, Wilson WH, Suttle CA. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci USA. 2010;107:19508–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abrahão J, Silva L, Silva LS, Khalil JYB, Rodrigues R, Arantes T, et al. Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat Commun. 2018;9:1–12.

    Article 

    Google Scholar
     

  • Meng L, Endo H, Blanc-Mathieu R, Chaffron S, Hernández-Velázquez R, Kaneko H, et al. Quantitative assessment of nucleocytoplasmic large DNA virus and host interactions predicted by co-occurrence analyses. mSphere. 2021;6:e01298–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moniruzzaman M, Wurch LL, Alexander H, Dyhrman ST, Gobler CJ, Wilhelm SW. Virus-host relationships of marine single-celled eukaryotes resolved from metatranscriptomics. Nat Commun. 2017;8:16054.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Massana R Picoeukaryotes. Encyclopedia of Microbiology (Third Edition). 2009. Academic Press, pp 674-88.

  • Derelle E, Monier A, Cooke R, Worden AZ, Grimsley NH, Moreau H. Diversity of viruses infecting the green microalga ostreococcus lucimarinus. J Virol. 2015;89:5812–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellec L, Grimsley N, Desdevises Y. Isolation of prasinoviruses of the green unicellular algae Ostreococcus spp. on a worldwide geographical scale. Appl Environ Microbiol. 2010;76:96–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santini S, Jeudy S, Bartoli J, Poirot O, Lescot M, Abergel C, et al. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc Natl Acad Sci USA. 2013;110:10800–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallot-Lavallée L, Blanc G, Claverie JM. Comparative genomics of chrysochromulina ericina virus and other microalga-infecting large DNA viruses highlights their intricate evolutionary relationship with the established mimiviridae family. J Virol. 2017;91:e00230–17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stough JMA, Yutin N, Chaban YV, Moniruzzaman M, Gann ER, Pound HL, et al. Genome and environmental activity of a chrysochromulina parva virus and its virophages. Front Microbiol. 2019;10:703.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farzad R, Ha AD, Aylward FO. Diversity and genomics of giant viruses in the North Pacific Subtropical Gyre. Front Microbiol. 2022;13:1021923.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaudhary C, Saeedi H, Costello MJ. Bimodality of latitudinal gradients in marine species richness. Trends Ecol Evol. 2016;31:670–6.

    Article 
    PubMed 

    Google Scholar
     

  • Chown SL, Sinclair BJ, Leinaas HP, Gaston KJ. Hemispheric asymmetries in biodiversity—a serious matter for ecology. PLoS Biol. 2004;2:e406.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ibarbalz FM, et al. Global trends in marine plankton diversity across kingdoms of Life. Cell. 2019;179:1084–1097.e21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hillebrand H. Strength, slope and variability of marine latitudinal gradients. Marine Ecology Progress Series. 2004;273:251–67.

    Article 

    Google Scholar
     

  • Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, et al. Global patterns and predictors of marine biodiversity across taxa. Nature. 2010;466:1098–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li T, Philander SGH. On the seasonal cycle of the equatorial atlantic ocean. J Clim. 1997;10:813–7.

    Article 

    Google Scholar
     

  • Edwards KF, Steward GF, Schvarcz CR. Making sense of virus size and the tradeoffs shaping viral fitness. Ecol Lett. 2021;24:363–73.

    Article 
    PubMed 

    Google Scholar
     

  • Longhurst AR. Ecological Geography of the Sea. 2010. Elsevier.

  • Yutin N, Koonin EV. Hidden evolutionary complexity of nucleo-cytoplasmic large DNA viruses of eukaryotes. Virol J. 2012;9:1–18.

    Article 

    Google Scholar
     

  • Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, et al. The 1.2-megabase genome sequence of Mimivirus. Science. 2004;306:1344–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saini HK, Fischer D. Structural and functional insights into Mimivirus ORFans. BMC Genomics. 2007;8:115.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abrahão JS, Araújo R, Colson P, La, Scola B. The analysis of translation-related gene set boosts debates around origin and evolution of mimiviruses. PLoS Genet. 2017;13:e1006532.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva LCF, Almeida GMF, Assis FL, Albarnaz JD, Boratto PVM, Dornas FP, et al. Modulation of the expression of mimivirus-encoded translation-related genes in response to nutrient availability during Acanthamoeba castellanii infection. Front Microbiol. 2015;6:539.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behrenfeld MJ, Kolber ZS. Widespread iron limitation of phytoplankton in the south pacific ocean. Science. 1999;283:840–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Revilla Y, Cebrián A, Baixerás E, Martínez C, Viñuela E, Salas ML. Inhibition of apoptosis by the African swine fever virus Bcl-2 homologue: role of the BH1 domain. Virology. 1997;228:400–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bidle KD, Kwityn CJ. Assessing the role of caspase activity and metacaspase expression on viral susceptibility of the coccolithophore, emiliania huxleyi (haptophyta). J Phycol. 2012;48:1079–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du J, Wang L, Wang Y, Shen J, Pan C, Meng Y, et al. Autophagy and apoptosis induced by Chinese giant salamander (Andrias davidianus) iridovirus (CGSIV). Vet Microbiol. 2016;195:87–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schrad JR, Abrahão JS, Cortines JR, Parent KN. Structural and proteomic characterization of the initiation of giant virus infection. Cell. 2020;181:1046–1061.e6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lartigue A, Burlat B, Coutard B, Chaspoul F, Claverie J-M, Abergel C. The megavirus chilensis Cu,Zn-superoxide dismutase: the first viral structure of a typical cellular copper chaperone-independent hyperstable dimeric enzyme. J Virol. 2015;89:824–32.

    Article 
    PubMed 

    Google Scholar
     

  • Van Etten JL, Meints RH. Giant viruses infecting algae. Annu Rev Microbiol. 1999;53:447–94.

    Article 
    PubMed 

    Google Scholar
     

  • Furuta M, Schrader JO, Schrader HS, Kokjohn TA, Nyaga S, McCullough AK, et al. Chlorella virus PBCV-1 encodes a homolog of the bacteriophage T4 UV damage repair gene denV. Appl Environ Microbiol. 1997;63:1551–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Redrejo-Rodríguez M, Ishchenko A, Saparbaev MK, Salas ML, Salas J. African swine fever virus AP endonuclease is a redox-sensitive enzyme that repairs alkylating and oxidative damage to DNA. Virology. 2009;390:102–9.

    Article 
    PubMed 

    Google Scholar
     

  • Manandhar M, Boulware KS, Wood RD. The ERCC1 and ERCC4 (XPF) genes and gene products. Gene. 2015;569:153.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson WH, Gilg IC, Duarte A, Ogata H. Development of DNA mismatch repair gene, MutS, as a diagnostic marker for detection and phylogenetic analysis of algal Megaviruses. Virology. 2014;466-467:123–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogata H, Ray J, Toyoda K, Sandaa R-A, Nagasaki K, Bratbak G, et al. Two new subfamilies of DNA mismatch repair proteins (MutS) specifically abundant in the marine environment. ISME J. 2011;5:1143–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piacente F, De Castro C, Jeudy S, Molinaro A, Salis A, Damonte G, et al. Giant virus megavirus chilensis encodes the biosynthetic pathway for uncommon acetamido sugars. J Biol Chem. 2014;289:24428–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parakkottil Chothi M, Duncan GA, Armirotti A, Abergel C, Gurnon JR, Van Etten JL, et al. Identification of an L-rhamnose synthetic pathway in two nucleocytoplasmic large DNA viruses. J Virol. 2010;84:8829–38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodrigues RAL, dos Santos Silva LK, Dornas FP, de Oliveira DB, Magalhães TFF, Santos DA, et al. Mimivirus fibrils are important for viral attachment to the microbial world by a diverse glycoside interaction repertoire. J Virol. 2015;89:11812.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geslin C, Gaillard M, Flament D, Rouault K, Le Romancer M, Prieur D, et al. Analysis of the first genome of a hyperthermophilic marine virus-like particle, PAV1, isolated from Pyrococcus abyssi. J Bacteriol. 2007;189:4510–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rose SL, Fulton JM, Brown CM, Natale F, Van Mooy BAS, Bidle KD. Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions. Environ Microbiol. 2014;16:1150–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aylward FO, Moniruzzaman M. ViralRecall-A Flexible command-line tool for the detection of giant virus signatures in ’Omic Data. Viruses. 2021;13:150.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weinheimer AR, Aylward FO. Infection strategy and biogeography distinguish cosmopolitan groups of marine jumbo bacteriophages. ISME J. 2022;16:1657–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lemos LN, Fulthorpe RR, Triplett EW, Roesch LFW. Rethinking microbial diversity analysis in the high throughput sequencing era. J Microbiol Methods. 2011;86:42–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlitzer R. Data analysis and visualization with ocean data view. doi.org/10.1016/s0098-3004(02)00040-7.

  • Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:1–11.

    Article 

    Google Scholar
     

  • Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2018;47:D309–D314.

    Article 
    PubMed Central 

    Google Scholar
     

  • Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2020;49:D412–D419.

    Article 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link