Biochemical and genotyping analyses of camels (Camelus dromedaries) trypanosomiasis in North Africa

  • Igbokwe, I. O. Evolving anti-disease strategies from biochemical pathogenesis of African trypanosomiasis. Adv. Cytol. Pathol. 3(2), 33–39 (2018).


    Google Scholar
     

  • Njiru, Z. K., Constantine, C. C., Gitonga, P. K., Thompson, R. C. & Reid, S. A. Genetic variability of Trypanosoma evansi isolates detected by inter-simple sequence repeat anchored-PCR and microsatellite. Vet. Parasitol. 147(1–2), 51–60 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Njiru, Z. K. et al. The use of ITS1 rDNA PCR in detecting pathogenic African trypanosomes. Parasitol. Res. 95(3), 186–192 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lukeš, J., Kachale, A., Votýpka, J., Butenko, A. & Field, M. C. African trypanosome strategies for conquering new hosts and territories: the end of monophyly?. Trends Parasitol. 38(9), 724–736 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hoare, C. A. The trypanosomes of mammals. In: A Zoological Monograph 1-749 (Blackwell Scientific Publications, Oxford, UK, 1972).

  • Saleh, M. A., Al-Salahy, M. B. & Sanousi, S. A. Oxidative stress in blood of camels (Camelus dromedaries) naturally infected with Trypanosoma evansi. Vet. Parasitol. 162(3–4), 192–199 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carr, I. M. et al. Inferring relative proportions of DNA variants from sequencing electropherograms. Bioinform. 25(24), 3244–3250 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Fantin, Y. S. et al. Base-calling algorithm with vocabulary (BCV) method for analyzing population sequencing chromatograms. PLoS ONE 8(1), e54835 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paparini, A., Jackson, B., Ward, S., Young, S. & Ryan, U. M. Multiple Cryptosporidium genotypes detected in wild black rats (Rattus rattus) from northern Australia. Exp. Parasitol. 131(4), 404–412 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Barbosa, A. D., Gofton, A. W., Paparini, A., Codello, A., Greay, T., Gillett, A., Warren, K., Irwin, P. & Ryan, U. Increased genetic diversity and prevalence of co-infection with Trypanosoma spp. in koalas (Phascolarctos cinereus) and their ticks identified using next-generation sequencing (NGS). PloS one 12(7), e0181279 (2017).

  • Van Dijk, E. L., Auger, H., Jaszczyszyn, Y. & Thermes, C. T. Ten years of next-generation sequencing technology. Trends Genet. 30(9), 418–426 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Kuczynski, J. et al. Direct sequencing of the human microbiome readily reveals community differences. Genome Biol. 11(5), 210 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathison, B. A. & Pritt, B. S. Update on malaria diagnostics and test utilization. J. Clin. Microbiol. 55(7), 2009–2017 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellman, G. L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82(1), 70–77 (1959).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S. & Cosic, V. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol. 54(5), 356–361 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drabkin, D. L. & Austin, J. H. Spectrophotometric studies: I. Spectrophotometric constants for common hemoglobin derivatives in human, dog, and rabbit blood. J. Biol. Chem. 98(2), 719–733 (1932).

    Article 
    CAS 

    Google Scholar
     

  • Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95(2), 351–358 (1979).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishikimi, M., Rao, N. A. & Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 46(2), 849–854 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aebi, H. Catalase. In: Bergmeyer, H. V., Eds., Methods in Enzymatic Analysis, 673–686 (Academic Press Inc., New York, 1974).

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15), 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest-HPC: fast selection of best-fit models of protein evolution. In Euro-Par 2010 Parallel Processing Workshops. Euro-Par 2010. Lecture Notes in Computer Science, vol. 6586. Springer, Berlin. doi.org/10.1007/978-3-642-21878-1_22 (2011).

  • Kozlov, A. M. et al. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35(21), 4453–4455 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37(5), 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snedecor, G. W. & Cochran, W. G. Statistical Methods (Iowa State Universirty Press, 1994).

    MATH 

    Google Scholar
     

  • Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv, p. 081257 (2016).

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(D1), D590–D596 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abou El-Naga, T. R. A. & Barghash, S. M. Blood parasites in camels (Camelus dromedarius) in Northern West Coast of Egypt. J. Bacteriol. Parasitol. 7(1), 258 (2016).

    Article 

    Google Scholar
     

  • Barghash, S. M., Darwish, A. M. & Abou-El-Naga, T. R. Molecular characterization and phylogenetic analysis of Trypanosoma evansi from local and imported camels in Egypt. J. Phylogenetics Evol. Biol. 4, 169 (2016).

    Article 

    Google Scholar
     

  • Claes, F. et al. Variable surface glycoprotein RoTat 1.2 PCR as a specific diagnostic tool for the detection of Trypanosoma evansi infections. Kinetoplastid Biol. Dis. 3(1), 1–6 (2004).

    Article 

    Google Scholar
     

  • Barghash, S. M., Abou El-Naga, T. R., El-Sherbeny, E. A. & Darwish, A. M. Prevalence of 350 Trypanosoma evansi in Maghrabi camels (Camelus dromedarius) in Northern-West Coast, Egypt using molecular and parasitological methods. Acta Parasitol. Globalis 5, 125–132 (2014).


    Google Scholar
     

  • Ranjithkumar, M. et al. Disturbance of oxidant/antioxidant equilibrium in horses naturally infected with Trypanosoma evansi. Vet. Parasitol. 180(3–4), 349–353 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parashar, R., Singla, L. D., Gupta, M. & Sharma, S. K. Evaluation and correlation of oxidative stress and haemato-biochemical observations in horses with natural patent and latent trypanosomosis in Punjab state of India. Acta Parasitol. 63(4), 733–743 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pandey, V. et al. Haemato-biochemical and oxidative status of buffaloes naturally infected with Trypanosoma evansi. Vet. Parasitol. 212(3–4), 118–122 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolkmer, P. et al. Lipid peroxidation associated with anemia in rats experimentally infected with Trypanosoma evansi. Vet. Parasitol. 165(1–2), 41–46 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cimen, M. Y. B. Free radicals metabolism in human erythrocytes. Clin. Chim. Acta 390(1–2), 1–11 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gutteridge, J. M. C. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 41(12), 1819–1828 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yusuf, A. B., Umar, I. A. & Nok, A. J. Effects of methanol extract of Vernonia amygdalina leaf on survival and some biochemical parameters in acute Trypanosoma brucei brucei infection. Afr. J. Biochem. Res. 6(12), 150–158 (2012).


    Google Scholar
     

  • Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom. 13(1), 341 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Thompson, C. K. & Thompson, R. C. A. Trypanosomes of Australian mammals: knowledge gaps regarding transmission and biosecurity. Trends Parasitol. 31(11), 553–562 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cooper, C., Clode, P. L., Peacock, C. & Thompson, R. A. C. Host-parasite relationships and life histories of trypanosomes in Australia. Adv. Parasitol. 97, 47–109 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Jenni, L. et al. Hybrid formation between African trypanosomes during cyclical transmission. Nature 322(6075), 173–175 (1986).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaunt, M. W. et al. Mechanism of genetic exchange in American trypanosomes. Nature 421(6926), 936–939 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hing, S. et al. Evaluating stress physiology and parasite infection parameters in the translocation of critically endangered woylies (Bettongia penicillata). EcoHealth 14, 128–138 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Tomlinson, S. & Raper, J. The lysis of Trypanosoma brucei by human serum. Nat. Biotechnol. 14(6), 717–721 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Welburn, S. C., Fèvre, E. M., Coleman, P. G., Odiit, M. & Maudlin, I. Sleeping sickness: a tale of two diseases. Trends Parasitol. 17(1), 19–24 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carnes, J. et al. Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Negl. Trop. Dis. 9(1), e3404 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lai, D. H., Hashimi, H., Lun, Z. R., Ayala, F. J. & Lukeš, J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl. Acad. Sci. USA 105(6), 1999–2004 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson, W., Backhouse, T. & Griffiths, A. The human serum resistance associated gene is ubiquitous and conserved in Trypanosoma brucei rhodesiense throughout East Africa. Infect. Genet. Evol. 1(3), 207–214 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balmer, O., Beadell, J. S., Gibson, W. & Caccone, A. Phylogeography and taxonomy of Trypanosoma brucei. PLoS Negl. Trop. Dis. 5(2), e961 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson, W., Nemetschke, L. & Ndungu, J. Conserved sequence of the TgsGP gene in Group 1 Trypanosoma brucei gambiense. Infect. Genet. Evol. 10(4), 453–458 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verloo, D., Magnus, E. & Büscher, P. General expression of RoTat 1.2 variable antigen type in Trypanosoma evansi isolates from different origin. Vet. Parasitol. 97(3), 185–191 (2001).

    Article 

    Google Scholar
     

  • Njiru, Z. K., Ouma, J. O., Enyaru, J. C. & Dargantes, A. Loop-mediated isothermal amplification (LAMP) test for detection of Trypanosoma evansi strain B. Exp. Parasitol. 125(3), 196–201 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cuypers, B. et al. Genome-wide SNP analysis reveals distinct origins of Trypanosoma evansi and Trypanosoma equiperdum. Genome Biol. Evol. 9(8), 1990–1997 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link