Coordination of RNA modifications in the brain and beyond

  • Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boccaletto P, Stefaniak F, Ray A, Cappannini A, Mukherjee S, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022;50:D231–D235.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung Y, Goldman D. Role of RNA modifications in brain and behavior. Genes Brain Behav. 2018;17:e12444.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu J, Chen M, Huang H, Zhu J, Song H, Zhu J, et al. Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res. 2018;46:1412–23.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flamand MN, Meyer KD. m6A and YTHDF proteins contribute to the localization of select neuronal mRNAs. Nucleic Acids Res. 2022;50:4464–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blaze J, Navickas A, Phillips HL, Heissel S, Plaza-Jennings A, Miglani S, et al. Neuronal Nsun2 deficiency produces tRNA epitranscriptomic alterations and proteomic shifts impacting synaptic signaling and behavior. Nat Commun. 2021;12:4913.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hetman M, Slomnicki LP. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J Neurochem. 2019;148:325–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song J, Yi C. Chemical modifications to RNA: A new layer of gene expression regulation. ACS Chem Biol. 2017;12:316–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han L, Phizicky EM. A rationale for tRNA modification circuits in the anticodon loop. RNA. 2018;24:1277–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ontiveros RJ, Shen H, Stoute J, Yanas A, Cui Y, Zhang Y, et al. Coordination of mRNA and tRNA methylations by TRMT10A. Proc Natl Acad Sci USA. 2020;117:7782–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169:1187–1200.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015;29:1343–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Zhang Y-C, Huang C, Shen H, Sun B, Cheng X, et al. m6a regulates neurogenesis and neuronal development by modulating histone methyltransferase ezh2. Genomics Proteom Bioinforma. 2019;17:154–68.

    Article 

    Google Scholar
     

  • Li J, Yang X, Qi Z, Sang Y, Liu Y, Xu B, et al. The role of mRNA m6A methylation in the nervous system. Cell Biosci. 2019;9:66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hess ME, Hess S, Meyer KD, Verhagen LAW, Koch L, Brönneke HS, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci. 2013;16:1042–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Z, Wang M, Xie D, Huang Z, Zhang L, Yang Y, et al. METTL3-mediated N6-methyladenosine mRNA modification enhances long-term memory consolidation. Cell Res. 2018;28:1050–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kan L, Ott S, Joseph B, Park ES, Dai W, Kleiner RE, et al. A neural m6A/Ythdf pathway is required for learning and memory in Drosophila. Nat Commun. 2021;12:1458.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma C, Chang M, Lv H, Zhang Z-W, Zhang W, He X, et al. RNA m6A methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol. 2018;19:68.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sevgi M, Rigoux L, Kühn AB, Mauer J, Schilbach L, Hess ME, et al. An obesity-predisposing variant of the FTO gene regulates D2R-dependent reward learning. J Neurosci. 2015;35:12584–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Yu C, Guo M, Zheng X, Ali S, Huang H, et al. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death. ACS Chem Neurosci. 2019;10:2355–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oldmeadow C, Mossman D, Evans T-J, Holliday EG, Tooney PA, Cairns MJ, et al. Combined analysis of exon splicing and genome wide polymorphism data predict schizophrenia risk loci. J Psychiatr Res. 2014;52:44–49.

    Article 
    PubMed 

    Google Scholar
     

  • McCaffrey TA, St Laurent G, Shtokalo D, Antonets D, Vyatkin Y, Jones D, et al. Biomarker discovery in attention deficit hyperactivity disorder: RNA sequencing of whole blood in discordant twin and case-controlled cohorts. BMC Med Genomics. 2020;13:160.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xi Z, Xue Y, Zheng J, Liu X, Ma J, Liu Y. WTAP expression predicts poor prognosis in malignant glioma patients. J Mol Neurosci. 2016;60:131–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang S, Chai P, Jia R, Jia R. Novel insights on m6A RNA methylation in tumorigenesis: a double-edged sword. Mol Cancer. 2018;17:101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowalski-Chauvel A, Lacore MG, Arnauduc F, Delmas C, Toulas C, Cohen-Jonathan-Moyal E et al. The m6a RNA demethylase ALKBH5 promotes radioresistance and invasion capability of glioma stem cells. Cancers (Basel). 2020;13. doi.org/10.3390/cancers13010040.

  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 1974;71:3971–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Theler D, Kaminska KH, Hiller M, de la Grange P, Pudimat R, et al. The YTH domain is a novel RNA binding domain. J Biol Chem. 2010;285:14701–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article 
    PubMed 

    Google Scholar
     

  • Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam MR, Lbik D, et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail. 2020;22:54–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res. 2020;48:3816–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6:74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites. Cell Rep. 2014;8:284–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv Z, Xu T, Li R, Zheng D, Li Y, Li W, et al. Downregulation of m6A methyltransferase in the Hippocampus of Tyrobp-/- mice and implications for learning and memory deficits. Front Neurosci. 2022;16:739201.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoon K-J, Ringeling FR, Vissers C, Jacob F, Pokrass M, Jimenez-Cyrus D, et al. Temporal control of mammalian cortical neurogenesis by m6a methylation. Cell. 2017;171:877–889.e17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du K, Zhang Z, Zeng Z, Tang J, Lee T, Sun T. Distinct roles of Fto and Mettl3 in controlling development of the cerebral cortex through transcriptional and translational regulations. Cell Death Dis. 2021;12:700.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ping X-L, Sun B-F, Wang L, Xiao W, Yang X, Wang W-J, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ignatova VV, Stolz P, Kaiser S, Gustafsson TH, Lastres PR, Sanz-Moreno A, et al. The rRNA m6A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes Dev. 2020;34:715–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma H, Wang X, Cai J, Dai Q, Natchiar SK, Lv R, et al. N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol. 2019;15:88–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, et al. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18:2004–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Tran N, Ernst FGM, Hawley BR, Zorbas C, Ulryck N, Hackert P, et al. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 2019;47:7719–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maden BE. Identification of the locations of the methyl groups in 18 S ribosomal RNA from Xenopus laevis and man. J Mol Biol. 1986;189:681–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Liang Y, Lin R, Xiong Q, Yu P, Ma J, et al. Mettl5 mediated 18S rRNA N6-methyladenosine (m6A) modification controls stem cell fate determination and neural function. Genes Dis. 2022;9:268–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richard EM, Polla DL, Assir MZ, Contreras M, Shahzad M, Khan AA, et al. Bi-allelic Variants in METTL5 Cause Autosomal-Recessive Intellectual Disability and Microcephaly. Am J Hum Genet. 2019;105:869–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han B, Wei S, Li F, Zhang J, Li Z, Gao X. Decoding m6A mRNA methylation by reader proteins in cancer. Cancer Lett. 2021;518:256–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liao S, Sun H, Xu C. YTH Domain: A Family of N6-methyladenosine (m6A) Readers. Genomics Proteom Bioinforma. 2018;16:99–107.

    Article 

    Google Scholar
     

  • Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Li G, Li Q, Zhang Q, Zhuo L, Chen X, et al. The roles and mechanisms of YTH domain-containing proteins in cancer development and progression. Am J Cancer Res. 2020;10:1068–84.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 2016;7:12626.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 2017;27:315–28.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Y, Zhang W, Shen F, Yang X, Liu H, Dai S, et al. YTH domain proteins: a family of m6a readers in cancer progression. Front Oncol. 2021;11:629560.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang G, Shi L, Ye Y, Shi H, Zeng L, Tiwary S, et al. YTHDF3 induces the translation of m6A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 2020;38:857–871.e7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai X, Gonzalez G, Li L, Li J, You C, Miao W, et al. YTHDF2 binds to 5-methylcytosine in RNA and modulates the maturation of Ribosomal RNA. Anal Chem. 2020;92:1346–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 2017;27:1115–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Wang J, Gu Q, Ma Y, Yang Y, Zhu J, et al. The biological function of m6A demethylase ALKBH5 and its role in human disease. Cancer Cell Int. 2020;20:347.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-Haim MS, Pinto Y, Moshitch-Moshkovitz S, Hershkovitz V, Kol N, Diamant-Levi T, et al. Dynamic regulation of N6,2’-O-dimethyladenosine (m6Am) in obesity. Nat Commun. 2021;12:7185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, et al. Differential m6A, m6Am, and m1A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell. 2018;71:973–985.e5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. The AlkB family of Fe(II)/α-ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond. J Biol Chem. 2015;290:20734–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 2016;113:E2047–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen G, Liu B, Yin S, Li S, Guo Y, Wang M, et al. Hypoxia induces an endometrial cancer stem-like cell phenotype via HIF-dependent demethylation of SOX2 mRNA. Oncogenesis. 2020;9:81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo C, Hajkova P, Ecker JR. Dynamic DNA methylation: In the right place at the right time. Science. 2018;361:1336–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shanmugam R, Fierer J, Kaiser S, Helm M, Jurkowski TP, Jeltsch A. Cytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequences. Cell Disco. 2015;1:15010.

    Article 
    CAS 

    Google Scholar
     

  • Bohnsack KE, Höbartner C, Bohnsack MT. Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes (Basel). 2019;10:102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. 2012;19:900–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rai K, Chidester S, Zavala CV, Manos EJ, James SR, Karpf AR, et al. Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev. 2007;21:261–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbasi-Moheb L, Mertel S, Gonsior M, Nouri-Vahid L, Kahrizi K, Cirak S, et al. Mutations in NSUN2 cause autosomal-recessive intellectual disability. Am J Hum Genet. 2012;90:847–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan MA, Rafiq MA, Noor A, Hussain S, Flores JV, Rupp V, et al. Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability. Am J Hum Genet. 2012;90:856–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez FJ, Lee JH, Lee JE, Blanco S, Nickerson E, Gabriel S, et al. Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome. J Med Genet. 2012;49:380–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komara M, Al-Shamsi AM, Ben-Salem S, Ali BR, Al-Gazali L. A novel single-nucleotide deletion (c.1020delA) in NSUN2 causes intellectual disability in an emirati child. J Mol Neurosci. 2015;57:393–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun S, Chen L, Wang Y, Wang J, Li N, Wang X. Further delineation of autosomal recessive intellectual disability syndrome caused by homozygous variant of the NSUN2 gene in a chinese pedigree. Mol Genet Genom Med. 2020;8:e1518.

    CAS 

    Google Scholar
     

  • George H, Bashir ZI, Hussain S. Impaired hippocampal NMDAR-LTP in a transgenic model of NSUN2-deficiency. Neurobiol Dis. 2022;163:105597.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA. 2008;14:2095–103.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P, et al. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J. 2014;33:2020–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Q, Zhang X, Shi J, Yan M, Zhou T. Origins and evolving functionalities of tRNA-derived small RNAs. Trends Biochem Sci. 2021;46:790–804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Trebak F, Souza LAC, Shi J, Zhou T, Kehoe PG, et al. Small RNA modifications in Alzheimer’s disease. Neurobiol Dis. 2020;145:105058.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanada T, Weitzer S, Mair B, Bernreuther C, Wainger BJ, Ichida J, et al. CLP1 links tRNA metabolism to progressive motor-neuron loss. Nature. 2013;495:474–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karaca E, Weitzer S, Pehlivan D, Shiraishi H, Gogakos T, Hanada T, et al. Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function. Cell. 2014;157:636–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schaffer AE, Eggens VRC, Caglayan AO, Reuter MS, Scott E, Coufal NG, et al. CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration. Cell. 2014;157:651–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schweizer U, Bohleber S, Fradejas-Villar N. The modified base isopentenyladenosine and its derivatives in tRNA. RNA Biol. 2017;14:1197–208.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamichhane TN, Arimbasseri AG, Rijal K, Iben JR, Wei FY, Tomizawa K, et al. Lack of tRNA-i6A modification causes mitochondrial-like metabolic deficiency in S. pombe by limiting activity of cytosolic tRNATyr, not mito-tRNA. RNA. 2016;22:583–96.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yarham JW, Lamichhane TN, Pyle A, Mattijssen S, Baruffini E, Bruni F, et al. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA. PLoS Genet. 2014;10:e1004424.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khalique A, Mattijssen S, Haddad AF, Chaudhry S, Maraia RJ. Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles. PLoS Genet. 2020;16:e1008330.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manickam N, Joshi K, Bhatt MJ, Farabaugh PJ. Effects of tRNA modification on translational accuracy depend on intrinsic codon-anticodon strength. Nucleic Acids Res. 2016;44:1871–81.

    Article 
    PubMed 

    Google Scholar
     

  • Kernohan KD, Dyment DA, Pupavac M, Cramer Z, McBride A, Bernard G, et al. Matchmaking facilitates the diagnosis of an autosomal-recessive mitochondrial disease caused by biallelic mutation of the tRNA isopentenyltransferase (TRIT1) gene. Hum Mutat. 2017;38:511–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H-H, Petty LE, Sha J, Zhao Y, Kuzma A, Valladares O, et al. Genetically regulated expression in late-onset Alzheimer’s disease implicates risk genes within known and novel loci. Transl Psychiatry. 2021;11:618.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamamoto K, Kuriu T, Matsumura K, Nagayasu K, Tsurusaki Y, Miyake N, et al. Multiple alterations in glutamatergic transmission and dopamine D2 receptor splicing in induced pluripotent stem cell-derived neurons from patients with familial schizophrenia. Transl Psychiatry. 2021;11:548.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lutz MW, Sprague D, Barrera J, Chiba-Falek O. Shared genetic etiology underlying Alzheimer’s disease and major depressive disorder. Transl Psychiatry. 2020;10:88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohn WE, Volkin E. Nucleoside-5′-phosphates from ribonucleic acid. Nature. 1951;167:483–4.

    Article 
    CAS 

    Google Scholar
     

  • Davis FF, Allen FW. Ribonucleic acids from yeast which contain a fifth nucleotide. J Biol Chem. 1957;227:907–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu CT, Allen FW. Studies on an isomer of uridine isolated from ribonucleic acids. Biochim Biophys Acta. 1959;32:393–406.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rintala-Dempsey AC, Kothe U. Eukaryotic stand-alone pseudouridine synthases – RNA modifying enzymes and emerging regulators of gene expression? RNA Biol. 2017;14:1185–96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet. 1998;19:32–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lafontaine DL, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 1998;12:527–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature. 2014;515:143–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovejoy AF, Riordan DP, Brown PO. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One. 2014;9:e110799.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, León-Ricardo BX, et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell. 2014;159:148–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li X, Zhu P, Ma S, Song J, Bai J, Sun F, et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol. 2015;11:592–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borchardt EK, Martinez NM, Gilbert WV. Regulation and function of RNA pseudouridylation in human cells. Annu Rev Genet. 2020;54:309–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heiss NS, Bächner D, Salowsky R, Kolb A, Kioschis P, Poustka A. Gene structure and expression of the mouse dyskeratosis congenita gene, dkc1. Genomics. 2000;67:153–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang C-C, Lo J-C, Chien C-T, Huang M-L. Spatially controlled expression of the Drosophila pseudouridine synthase RluA-1. Int J Dev Biol. 2011;55:223–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song W, Ressl S, Tracey WD. Loss of pseudouridine synthases in the rlua family causes hypersensitive nociception in drosophila. G3 (Bethesda). 2020;10:4425–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee SH, Kim I, Chung BC. Increased urinary level of oxidized nucleosides in patients with mild-to-moderate Alzheimer’s disease. Clin Biochem. 2007;40:936–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Machuca-Tzili L, Brook D, Hilton-Jones D. Clinical and molecular aspects of the myotonic dystrophies: a review. Muscle Nerve. 2005;32:1–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • deLorimier E, Hinman MN, Copperman J, Datta K, Guenza M, Berglund JA. Pseudouridine modification inhibits muscleblind-like 1 (MBNL1) binding to CCUG repeats and minimally structured RNA through reduced RNA flexibility. J Biol Chem. 2017;292:4350–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karijolich J, Yu Y-T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature. 2011;474:395–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song J, Dong L, Sun H, Luo N, Huang Q, Li K et al. CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons. Mol Cell. 2022. doi.org/10.1016/j.molcel.2022.11.011.

  • Ito S, Horikawa S, Suzuki T, Kawauchi H, Tanaka Y, Suzuki T, et al. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA). J Biol Chem. 2014;289:35724–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito S, Akamatsu Y, Noma A, Kimura S, Miyauchi K, Ikeuchi Y, et al. A single acetylation of 18 S rRNA is essential for biogenesis of the small ribosomal subunit in Saccharomyces cerevisiae. J Biol Chem. 2014;289:26201–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tyc K, Steitz JA. U3, U8 and U13 comprise a new class of mammalian snRNPs localized in the cell nucleolus. EMBO J. 1989;8:3113–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharma S, Langhendries J-L, Watzinger P, Kötter P, Entian K-D, Lafontaine DLJ. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 2015;43:2242–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruppa J, Zachau HG. Multiplicity of serine-specific transfer RNAs of brewer’s and baker’s yeast. Biochim Biophys Acta. 1972;277:499–512.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018;175:1872.e24.

    Article 

    Google Scholar
     

  • Sas-Chen A, Thomas JM, Matzov D, Taoka M, Nance KD, Nir R, et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature. 2020;583:638–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arango D, Sturgill D, Yang R, Kanai T, Bauer P, Roy J, et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol Cell. 2022;82:2912.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo X-F, Wang X-H, Fu Y-L, Meng Q, Huang B-Y, Yang R, et al. Elevation of N-acetyltransferase 10 in hippocampal neurons mediates depression- and anxiety-like behaviors. Brain Res Bull. 2022;185:91–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao W, Tian G, Xu S, Li J, Zhang Z, Li J. NAT10 as a potential prognostic biomarker and therapeutic target for HNSCC. Cancer Cell Int. 2021;21:413.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zi J, Han Q, Gu S, McGrath M, Kane S, Song C, et al. Targeting NAT10 induces apoptosis associated with enhancing endoplasmic reticulum stress in acute myeloid leukemia cells. Front Oncol. 2020;10:598107.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang C, Wu T, Zhang J, Liu J, Zhao K, Sun W, et al. Prognostic and immunological role of mRNA ac4C regulator NAT10 in pan-cancer: new territory for cancer research? Front Oncol. 2021;11:630417.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan T. Modifications and functional genomics of human transfer RNA. Cell Res. 2018;28:395–404.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Decatur WA, Fournier MJ. rRNA modifications and ribosome function. Trends Biochem Sci. 2002;27:344–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boo SH, Ha H, Kim YK. m1A and m6A modifications function cooperatively to facilitate rapid mRNA degradation. Cell Rep. 2022;40:111317.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Q, Li X, Tang H, Jiang B, Dou Y, Gorospe M, et al. NSUN2-mediated m5C methylation and METTL3/METTL14-mediated m6A methylation cooperatively enhance p21 translation. J Cell Biochem. 2017;118:2587–98.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khoddami V, Yerra A, Mosbruger TL, Fleming AM, Burrows CJ, Cairns BR. Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc Natl Acad Sci USA. 2019;116:6784–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flamand MN, Ke K, Tamming R, Meyer KD Single-molecule identification of the target RNAs of different RNA binding proteins simultaneously in cells. Genes Dev. 2022. doi.org/10.1101/gad.349983.122.

  • Ohshiro T, Konno M, Asai A, Komoto Y, Yamagata A, Doki Y, et al. Single-molecule RNA sequencing for simultaneous detection of m6A and 5mC. Sci Rep. 2021;11:19304.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stephenson W, Razaghi R, Busan S, Weeks KM, Timp W, Smibert P Direct detection of RNA modifications and structure using single-molecule nanopore sequencing. Cell Genomics 2022;2. doi.org/10.1016/j.xgen.2022.100097.

  • Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods. 2018;15:201–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang J-F, Yang Q, Liu C-X, Wu M, Chen L-L, Yang L. N6-Methyladenosines Modulate A-to-I RNA editing. Mol Cell. 2018;69:126.e6.

    Article 

    Google Scholar
     

  • Figaro S, Wacheul L, Schillewaert S, Graille M, Huvelle E, Mongeard R, et al. Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575. Mol Cell Biol. 2012;32:2254–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Studte P, Zink S, Jablonowski D, Bär C, von der Haar T, Tuite MF, et al. tRNA and protein methylase complexes mediate zymocin toxicity in yeast. Mol Microbiol. 2008;69:1266–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramos J, Fu D. The emerging impact of tRNA modifications in the brain and nervous system. Biochim Biophys Acta Gene Regul Mech. 2019;1862:412–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blaze J, Akbarian S. The tRNA regulome in neurodevelopmental and neuropsychiatric disease. Mol Psychiatry. 2022;27:3204–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deshpande KL, Katze JR. Characterization of cDNA encoding the human tRNA-guanine transglycosylase (TGT) catalytic subunit. Gene. 2001;265:205–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y-C, Kelly VP, Stachura SV, Garcia GA. Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure. RNA. 2010;16:958–68.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehrenhofer-Murray AE Cross-Talk between Dnmt2-dependent tRNA methylation and queuosine modification. Biomolecules. 2017;7. doi.org/10.3390/biom7010014.

  • Tuorto F, Legrand C, Cirzi C, Federico G, Liebers R, Müller M et al. Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J. 2018; 37. doi.org/10.15252/embj.201899777.

  • Müller M, Legrand C, Tuorto F, Kelly VP, Atlasi Y, Lyko F, et al. Queuine links translational control in eukaryotes to a micronutrient from bacteria. Nucleic Acids Res. 2019;47:3711–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franke B, Vermeulen SHHM, Steegers-Theunissen RPM, Coenen MJ, Schijvenaars MMVAP, Scheffer H, et al. An association study of 45 folate-related genes in spina bifida: Involvement of cubilin (CUBN) and tRNA aspartic acid methyltransferase 1 (TRDMT1). Birth Defects Res Part A Clin Mol Teratol. 2009;85:216–26.

    Article 
    CAS 

    Google Scholar
     

  • Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, et al. Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop. RNA. 2012;18:1921–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guy MP, Phizicky EM. Conservation of an intricate circuit for crucial modifications of the tRNAPhe anticodon loop in eukaryotes. RNA. 2015;21:61–74.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramser J, Winnepenninckx B, Lenski C, Errijgers V, Platzer M, Schwartz CE, et al. A splice site mutation in the methyltransferase gene FTSJ1 in Xp11.23 is associated with non-syndromic mental retardation in a large Belgian family (MRX9). J Med Genet. 2004;41:679–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Visvanathan A, Patil V, Abdulla S, Hoheisel JD, Somasundaram K N6-Methyladenosine Landscape of Glioma Stem-Like Cells: METTL3 is essential for the expression of actively transcribed genes and sustenance of the oncogenic signaling. Genes (Basel). 2019;10. doi.org/10.3390/genes10020141.

  • Levi O, Arava YS. Pseudouridine-mediated translation control of mRNA by methionine aminoacyl tRNA synthetase. Nucleic Acids Res. 2021;49:432–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Levi O, Arava Y. mRNA association by aminoacyl tRNA synthetase occurs at a putative anticodon mimic and autoregulates translation in response to tRNA levels. PLoS Biol. 2019;17:e3000274.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao X, Patton JR, Davis SL, Florence B, Ames SJ, Spanjaard RA. Regulation of nuclear receptor activity by a pseudouridine synthase through posttranscriptional modification of steroid receptor RNA activator. Mol Cell. 2004;15:549–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leygue E. Steroid receptor RNA activator (SRA1): unusual bifaceted gene products with suspected relevance to breast cancer. Nucl Recept Signal. 2007;5:e006.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gamerdinger M, Manthey D, Behl C. Oestrogen receptor subtype-specific repression of calpain expression and calpain enzymatic activity in neuronal cells—implications for neuroprotection against Ca-mediated excitotoxicity. J Neurochem. 2006;97:57–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Foster TC. Role of estrogen receptor alpha and beta expression and signaling on cognitive function during aging. Hippocampus. 2012;22:656–69.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaheen R, Han L, Faqeih E, Ewida N, Alobeid E, Phizicky EM, et al. A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition. Hum Genet. 2016;135:707–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H-Y, Liu Y-Y, Yang F, Zhang L, Zhang F-L, Hu X, et al. Acetylation of MORC2 by NAT10 regulates cell-cycle checkpoint control and resistance to DNA-damaging chemotherapy and radiotherapy in breast cancer. Nucleic Acids Res. 2020;48:3638–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu X, Tan Y, Zhang C, Zhang Y, Zhang L, Ren P, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 2016;17:349–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zachau HG, Dütting D, Feldmann H. The structures of two serine transfer ribonucleic acids. Hoppe Seylers Z Physiol Chem. 1966;347:212–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vilardo E, Amman F, Toth U, Kotter A, Helm M, Rossmanith W. Functional characterization of the human tRNA methyltransferases TRMT10A and TRMT10B. Nucleic Acids Res. 2020;48:6157–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Igoillo-Esteve M, Genin A, Lambert N, Désir J, Pirson I, Abdulkarim B, et al. tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. PLoS Genet. 2013;9:e1003888.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gillis D, Krishnamohan A, Yaacov B, Shaag A, Jackman JE, Elpeleg O. TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly. J Med Genet. 2014;51:581–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bourgeois G, Létoquart J, van Tran N, Graille M Trm112, a protein activator of methyltransferases modifying actors of the eukaryotic translational apparatus. Biomolecules. 2017;7. doi.org/10.3390/biom7010007.

  • Fu D, Brophy JAN, Chan CTY, Atmore KA, Begley U, Paules RS, et al. Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Mol Cell Biol. 2010;30:2449–59.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourgeois G, Marcoux J, Saliou J-M, Cianférani S, Graille M. Activation mode of the eukaryotic m2G10 tRNA methyltransferase Trm11 by its partner protein Trm112. Nucleic Acids Res. 2017;45:1971–82.

    CAS 
    PubMed 

    Google Scholar
     

  • Lacoux C, Wacheul L, Saraf K, Pythoud N, Huvelle E, Figaro S, et al. The catalytic activity of the translation termination factor methyltransferase Mtq2-Trm112 complex is required for large ribosomal subunit biogenesis. Nucleic Acids Res. 2020;48:12310–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sepich-Poore C, Zheng Z, Schmitt E, Wen K, Zhang ZS, Cui X-L, et al. The METTL5-TRMT112 N6-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation. J Biol Chem. 2022;298:101590.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leismann J, Spagnuolo M, Pradhan M, Wacheul L, Vu MA, Musheev M, et al. The 18S ribosomal RNA m6 A methyltransferase Mettl5 is required for normal walking behavior in Drosophila. EMBO Rep. 2020;21:e49443.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monies D, Vågbø CB, Al-Owain M, Alhomaidi S, Alkuraya FS. Recessive truncating mutations in ALKBH8 cause intellectual disability and severe impairment of wobble uridine modification. Am J Hum Genet. 2019;104:1202–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saad AK, Marafi D, Mitani T, Du H, Rafat K, Fatih JM, et al. Neurodevelopmental disorder in an Egyptian family with a biallelic ALKBH8 variant. Am J Med Genet A. 2021;185:1288–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doll A, Grzeschik KH. Characterization of two novel genes, WBSCR20 and WBSCR22, deleted in Williams-Beuren syndrome. Cytogenet Cell Genet. 2001;95:20–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46:D303–D307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen H, Gonskikh Y, Stoute J, Liu KF. Human DIMT1 generates N26,6A-dimethylation-containing small RNAs. J Biol Chem. 2021;297:101146.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandey KK, Madhry D, Ravi Kumar YS, Malvankar S, Sapra L, Srivastava RK, et al. Regulatory roles of tRNA-derived RNA fragments in human pathophysiology. Mol Ther Nucleic Acids. 2021;26:161–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosace D, López J, Blanco S. Emerging roles of novel small non-coding regulatory RNAs in immunity and cancer. RNA Biol. 2020;17:1196–213.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324:929–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu L, Guerrero CR, Zhong N, Amato NJ, Liu Y, Liu S, et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc. 2014;136:11582–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen H, Ontiveros RJ, Owens MC, Liu MY, Ghanty U, Kohli RM, et al. TET-mediated 5-methylcytosine oxidation in tRNA promotes translation. J Bio Chem. 2021;296:100087.

    Article 
    CAS 

    Google Scholar
     

  • He C, Bozler J, Janssen KA, Wilusz JE, Garcia BA, Schorn AJ, et al. TET2 chemically modifies tRNAs and regulates tRNA fragment levels. Nat Struct Mol Biol. 2021;28:62–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL, Strahl BD. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol. 2005;25:3305–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang H, Weng H, Zhou K, Wu T, Zhao BS, Sun M, et al. Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature. 2019;567:414–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM, et al. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science. 2020;367:580–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morey L, Helin K. Polycomb group protein-mediated repression of transcription. Trends Biochem Sci. 2010;35:323–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pasini D, Bracken AP, Jensen MR, Lazzerini Denchi E, Helin K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 2004;23:4061–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell. 2004;15:57–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie Y, Castro-Hernández R, Sokpor G, Pham L, Narayanan R, Rosenbusch J, et al. RBM15 modulates the function of chromatin remodeling factor BAF155 through RNA methylation in developing cortex. Mol Neurobiol. 2019;56:7305–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y-T, Shen J-Y, Chen D-P, Wu C-F, Guo R, Zhang P-P, et al. Identification of cross-talk between m6A and 5mC regulators associated with onco-immunogenic features and prognosis across 33 cancer types. J Hematol Oncol. 2020;13:22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Li A, Sun B-F, Yang Y, Han Y-N, Yuan X, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol. 2019;21:978–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Y, Wang L, Han X, Yang W-L, Zhang M, Ma H-L, et al. RNA 5-methylcytosine facilitates the maternal-to-zygotic transition by preventing maternal mRNA decay. Mol Cell. 2019;75:1188–1202.e11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang X, Yang Y, Sun B-F, Chen Y-S, Xu J-W, Lai W-Y, et al. 5-methylcytosine promotes mRNA export – NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 2017;27:606–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian J, Zhuo Z, Zhu J, Yang Z, Jiao Z, Li Y, et al. Association between METTL3 gene polymorphisms and neuroblastoma susceptibility: A nine-centre case-control study. J Cell Mol Med. 2020;24:9280–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuo Z, Lu H, Zhu J, Hua R-X, Li Y, Yang Z, et al. METTL14 gene polymorphisms confer neuroblastoma susceptibility: an eight-center case-control study. Mol Ther Nucleic Acids. 2020;22:17–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sobczyk-Kopciol A, Broda G, Wojnar M, Kurjata P, Jakubczyk A, Klimkiewicz A, et al. Inverse association of the obesity predisposing FTO rs9939609 genotype with alcohol consumption and risk for alcohol dependence. Addiction. 2011;106:739–48.

    Article 
    PubMed 

    Google Scholar
     

  • Samaan Z, Anand SS, Zhang X, Desai D, Rivera M, Pare G, et al. The protective effect of the obesity-associated rs9939609 A variant in fat mass- and obesity-associated gene on depression. Mol Psychiatry. 2013;18:1281–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roffeei SN, Mohamed Z, Reynolds GP, Said MA, Hatim A, Mohamed EHM, et al. Association of FTO, LEPR and MTHFR gene polymorphisms with metabolic syndrome in schizophrenia patients receiving antipsychotics. Pharmacogenomics. 2014;15:477–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song X, Pang L, Feng Y, Fan X, Li X, Zhang W, et al. Fat-mass and obesity-associated gene polymorphisms and weight gain after risperidone treatment in first episode schizophrenia. Behav Brain Funct. 2014;10:35.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng H, Li M, Liu J, Zhu J, Cheng J, Li Y, et al. YTHDF2 Gene rs3738067 A>G Polymorphism Decreases Neuroblastoma Risk in Chinese Children: Evidence From an Eight-Center Case-Control Study. Front Med (Lausanne). 2021;8:797195.

    Article 
    PubMed 

    Google Scholar
     

  • Qiu X, He H, Huang Y, Wang J, Xiao Y. Genome-wide identification of m6A-associated single-nucleotide polymorphisms in Parkinson’s disease. Neurosci Lett. 2020;737:135315.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin L, Deng C, Zhou C, Zhang X, Zhu J, Liu J, et al. NSUN2 gene rs13181449 C>T polymorphism reduces neuroblastoma risk. Gene. 2022;854:147120.

    Article 
    PubMed 

    Google Scholar
     

  • Dyment DA, O’Donnell-Luria A, Agrawal PB, Coban Akdemir Z, Aleck KA, Antaki D, et al. Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome. Am J Med Genet A. 2021;185:119–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yıldırım M, Bektaş Ö, Tunçez E, Yeniay Süt N, Sayar Y, Öncül Ü, et al. A Case of Combined Oxidative Phosphorylation Deficiency 35 Associated with a Novel Missense Variant of the TRIT1 Gene. Mol Syndromol. 2022;13:139–45.

    Article 
    PubMed 

    Google Scholar
     

  • de Brouwer APM, Abou Jamra R, Körtel N, Soyris C, Polla DL, Safra M, et al. Variants in PUS7 cause intellectual disability with speech delay, microcephaly, short stature, and aggressive behavior. Am J Hum Genet. 2018;103:1045–52.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darvish H, Azcona LJ, Alehabib E, Jamali F, Tafakhori A, Ranji-Burachaloo S, et al. A novel PUS7 mutation causes intellectual disability with autistic and aggressive behaviors. Neurol Genet. 2019;5:e356.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaheen R, Tasak M, Maddirevula S, Abdel-Salam GMH, Sayed ISM, Alazami AM, et al. PUS7 mutations impair pseudouridylation in humans and cause intellectual disability and microcephaly. Hum Genet. 2019;138:231–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang H, Zhang L, Xiao B, Long H, Yang L. Compound heterozygous mutations in PUS3 gene identified in a Chinese infant with severe epileptic encephalopathy and multiple malformations. Neurol Sci. 2020;41:465–7.

    Article 
    PubMed 

    Google Scholar
     

  • Nøstvik M, Kateta SM, Schönewolf-Greulich B, Afenjar A, Barth M, Boschann F, et al. Clinical and molecular delineation of PUS3-associated neurodevelopmental disorders. Clin Genet. 2021;100:628–33.

    Article 
    PubMed 

    Google Scholar
     

  • Abdelrahman HA, Al-Shamsi AM, Ali BR, Al-Gazali L. A null variant in PUS3 confirms its involvement in intellectual disability and further delineates the associated neurodevelopmental disease. Clin Genet. 2018;94:586–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Froukh T, Nafie O, Al Hait SAS, Laugwitz L, Sommerfeld J, Sturm M, et al. Genetic basis of neurodevelopmental disorders in 103 Jordanian families. Clin Genet. 2020;97:621–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reuter MS, Tawamie H, Buchert R, Hosny Gebril O, Froukh T, Thiel C, et al. Diagnostic yield and novel candidate genes by exome sequencing in 152 consanguineous families with neurodevelopmental disorders. JAMA Psychiatry. 2017;74:293–9.

    Article 
    PubMed 

    Google Scholar
     

  • Read more here: Source link