ATP6V0C gene variants were identified in individuals with epilepsy, with or without developmental delay

  • Steering Committee on Quality Improvement and Management, Subcommittee on Febrile Seizures American Academy of Pediatrics. Febrile seizures clinical practice guideline for the long-term management of the child with simple febrile seizures. Pediatrics. 2008;121:1281–6.

  • Camfield P, Camfield C. Febrile seizures and genetic epilepsy with febrile seizures plus (GEFS+). Epileptic Disord. 2015;17:124–33.

    Article 
    PubMed 

    Google Scholar
     

  • Annegers JF, Hauser WA, Shirts SB, Kurland LT. Factors prognostic of unprovoked seizures after febrile convulsions. N. Engl J Med. 1987;316:493–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nelson KB, Ellenberg JH. Predictors of epilepsy in children who have experienced febrile seizures. N. Engl J Med. 1976;295:1029–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang JQ, Macdonald RL. Molecular Pathogenic Basis for GABRG2 Mutations Associated With a Spectrum of Epilepsy Syndromes, From Generalized Absence Epilepsy to Dravet Syndrome. JAMA Neurol. 2016;73:1009–16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian Y, Zhai QX, Li XJ, Shi Z, Cheng CF, Fan CX, et al. ATP6V0C Is Associated With Febrile Seizures and Epilepsy With Febrile Seizures Plus. Front Mol Neurosci. 2022;15:889534.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ittiwut C, Poonmaksatit S, Boonsimma P, Desudchit T, Suphapeetiporn K, Ittiwut R, et al. Novel de novo mutation substantiates ATP6V0C as a gene causing epilepsy with intellectual disability. Brain Dev. 2021;43:490–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mattison KA, Tossing G, Mulroe F, Simmons C, Butler KM, Schreiber A, et al. ATP6V0C variants impair vacuolar V-ATPase causing a neurodevelopmental disorder often associated with epilepsy. Brain. 2023;146:1357–72.

    Article 
    PubMed 

    Google Scholar
     

  • Wang L, Tossing G, Mulroe F, Simmons C, Butler KM, Schreiber A, et al. Structures of a Complete Human V-ATPase Reveal Mechanisms of Its Assembly. Mol Cell. 2020;80:501–11.e3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maxson ME, Grinstein S. The vacuolar-type H+-ATPase at a glance – more than a proton pump. J Cell Sci. 2014;127:4987–93.

    Article 
    PubMed 

    Google Scholar
     

  • Drory O, Nelson N. Structural and functional features of yeast V-ATPase subunit C. Biochim Biophys Acta. 2006;1757:297–303.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun-Wada G, Murata Y, Yamamoto A, Kanazawa H, Wada Y, Futai M. Acidic endomembrane organelles are required for mouse postimplantation development. Dev Biol. 2000;228:315–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung AY, Kim MJ, Kim D, Bang S, Hwang SW, Lim CS, et al. Neuron-specific expression of atp6v0c2 in zebrafish CNS. Dev Dyn. 2010;239:2501–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164–e164.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mucha BE, Banka S, Ajeawung NF, Molidperee S, Chen GG, Koenig MK, et al. A new microdeletion syndrome involving TBC1D24, ATP6V0C, and PDPK1 causes epilepsy, microcephaly, and developmental delay. Genet Med. 2019;21:1058–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tinker RJ, Burghel GJ, Garg S, Steggall M, Cuvertino S, Banka S. Haploinsufficiency of ATP6V0C possibly underlies 16p13.3 deletions that cause microcephaly, seizures, and neurodevelopmental disorder. Am J Med Genet A. 2021;185:196–202.

    Article 
    CAS 

    Google Scholar
     

  • Higashida H, Yokoyama S, Tsuji C, Muramatsu SI. Neurotransmitter release: vacuolar ATPase V0 sector c-subunits in possible gene or cell therapies for Parkinson’s, Alzheimer’s, and psychiatric diseases. J Physiological Sci. 2017;67:11–17.

    Article 
    CAS 

    Google Scholar
     

  • Fassio A, Esposito A, Kato M, Saitsu H, Mei D, Marini C, et al. De novo mutations of the ATP6V1A gene cause developmental encephalopathy with epilepsy. Brain. 2018;141:1703–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link