Integrative population genetics and metagenomics reveals urbanization increases pathogen loads and decreases connectivity in a wild bee

As urbanization continues to increase, it is expected that two-thirds of the human population will reside in cities by 2050. Urbanization fragments and degrades natural landscapes, threatening wildlife including economically important species such as bees. In this study, we employ whole genome sequencing to characterize the population genetics, metagenome and microbiome, and environmental stressors of a common wild bee, Ceratina calcarata. Population genomic analyses revealed the presence of low genetic diversity and elevated levels of inbreeding. Through analyses of isolation by distance, resistance, and environment across urban landscapes, we found that green spaces including shrubs and scrub were the most optimal pathways for bee dispersal, and conservation efforts should focus on preserving these land traits to maintain high connectivity across sites for wild bees. Metagenomic analyses revealed landscape sites exhibiting urban heat island effects, such as high temperatures and development but low precipitation and green space, had the highest taxa alpha diversity across all domains even when isolating for potential pathogens. Notably, the integration of population and metagenomic data showed that reduced connectivity in urban areas is not only correlated with lower relatedness among individuals but is also associated with increased pathogen diversity, exposing vulnerable urban bees to more pathogens. Overall, our combined population and metagenomic approach found significant environmental variation in bee microbiomes and nutritional resources even in the absence of genetic differentiation, as well as enabled the potential early detection of stressors to bee health.


Keywords:

microbiome; network analysis; pathogens, Ceratina calcarata; population genomics; urban heat island; wild bees.

Read more here: Source link