Immune-related transcripts, microbiota and vector competence differ in dengue-2 virus-infected geographically distinct Aedes aegypti populations | Parasites & Vectors

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 2016;16:712–23.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Messina JP, Brady OJ, Golding N, Kraemer MUG, Wint GRW, Ray SE, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol. 2019;4:1508–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bancroft T. On the etiology of dengue fever. Aust Med Gaz. 1906;25:17–8.


    Google Scholar
     

  • Kraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:18.

    Article 

    Google Scholar
     

  • Beerntsen BT, James AA, Christensen BM. Genetics of mosquito vector competence. Microbiol Mol Biol Rev. 2000;64:115.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franz AWE, Kantor AM, Passarelli AL, Clem RJ. Tissue barriers to arbovirus infection in mosquitoes. Viruses. 2015;7:3741–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richardson J, Molina-Cruz A, Salazar MI, Black W 4th. Quantitative analysis of dengue-2 virus RNA during the extrinsic incubation period in individual Aedes aegypti. Am J Trop Med Hyg. 2006;74:132–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Souza-Neto JA, Powell JR, Bonizzoni M. Aedes aegypti vector competence studies: a review. Infect Genet Evol. 2019;67:191–209.

    Article 
    PubMed 

    Google Scholar
     

  • Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, Olson KE. RNA interference acts as a natural antiviral response to O’nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc Natl Acad Sci USA. 2004;101:17240–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sánchez-Vargas I, Scott JC, Poole-Smith BK, Franz AWE, Barbosa-Solomieu V, Wilusz J, et al. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog. 2009;5:e1000299.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McFarlane M, Arias-Goeta C, Martin E, O’Hara Z, Lulla A, Mousson L, et al. Characterization of Aedes aegypti innate-immune pathways that limit Chikungunya virus replication. PLoS Negl Trop Dis. 2014;8:e2994.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng X, Zhou S, Wang J, Hu W. MicroRNA profiles and functions in mosquitoes. PLoS Negl Trop Dis. 2018;12:e0006463.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tikhe CV, Dimopoulos G. Mosquito antiviral immune pathways. Dev Comp Immunol. 2021;116:103964.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanders HR, Foy BD, Evans AM, Ross LS, Beaty BJ, Olson KE, et al. Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti. Insect Biochem Mol Biol. 2005;35:1293–307.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti Toll pathway controls dengue virus infection. PLoS Pathog. 2008;4:e1000098–e1000098.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sim S, Jupatanakul N, Ramirez JL, Kang S, Romero-Vivas CM, Mohammed H, et al. Transcriptomic profiling of diverse Aedes aegypti strains reveals increased basal-level immune activation in dengue virus-refractory populations and identifies novel virus-vector molecular interactions. PLoS Negl Trop Dis. 2013;7:e2295–e2295.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barletta ABF, Nascimento-Silva MCL, Talyuli OAC, Oliveira JHM, Pereira LOR, Oliveira PL, et al. Microbiota activates IMD pathway and limits Sindbis infection in Aedes aegypti. Parasit Vectors. 2017;10:103–103.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Souza-Neto JA, Sim S, Dimopoulos G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci USA. 2009;106:17841–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jupatanakul N, Sim S, Angleró-Rodríguez YI, Souza-Neto J, Das S, Poti KE, et al. Engineered Aedes aegypti JAK/STAT pathway-mediated immunity to dengue virus. PLoS Negl Trop Dis. 2017;11:e0005187.

  • Ocampo CB, Caicedo PA, Jaramillo G, Bedoya RU, Baron O, Serrato IM, et al. Differential expression of apoptosis related genes in selected strains of aedes aegypti with different susceptibilities to dengue virus. PLoS ONE. 2013;8:10.

    Article 

    Google Scholar
     

  • Eng MW, van Zuylen MN, Severson DW. Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector Aedes aegypti. Insect Biochem Mol Biol. 2016;76:70–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen T-Y, Smartt CT. Activation of the autophagy pathway decreases dengue virus infection in Aedes aegypti cells. Parasit Vectors. 2021;14:551.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors. 2013;6:146–146.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blitvich BJ, Firth AE. Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses. 2015;7:1927–59. doi.org/10.3390/v7041927.

  • Hegde S, Rasgon JL, Hughes GL. The microbiome modulates arbovirus transmission in mosquitoes. Curr Opin Virol. 2015;15:97–102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angleró-Rodríguez YI, Talyuli OA, Blumberg BJ, Kang S, Demby C, Shields A, et al. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity. Elife. 2017;6:e28844.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strand MR. Composition and functional roles of the gut microbiota in mosquitoes. Curr Opin Insect Sci. 2018;28:59–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caragata EP, Tikhe CV, Dimopoulos G. Curious entanglements: interactions between mosquitoes, their microbiota, and arboviruses. Curr Opin Virol. 2019;37:26–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to Dengue-2 virus. PLoS ONE. 2012;7:e40401.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez JL, Souza-Neto J, Torres Cosme R, Rovira J, Ortiz A, Pascale JM, et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis. 2012;6:e1561.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog. 2014;10:e1004398.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong Y, Morton JC Jr, Ramirez JL, Souza-Neto JA, Dimopoulos G. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. Insect Biochem Mol Biol. 2012;42:126–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kenney JL, Solberg OD, Langevin SA, Brault AC. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. J Gen Virol. 2014;95:2796–808.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Öhlund P, Lundén H, Blomström A-L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes. 2019;55:127–37.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Charan SS, Pawar KD, Severson DW, Patole MS, Shouche YS. Comparative analysis of midgut bacterial communities of Aedes aegypti mosquito strains varying in vector competence to dengue virus. Parasitol Res. 2013;112:2627–37.

    Article 
    PubMed 

    Google Scholar
     

  • Alto BW, Smartt CT, Shin D, Bettinardi D, Malicoate J, Anderson SL, et al. Susceptibility of Florida Aedes aegypti and Aedes albopictus to dengue viruses from Puerto Rico. J Vector Ecol. 2014;39:406–13.

    Article 
    PubMed 

    Google Scholar
     

  • Smartt CT, Shin D, Alto BW. Dengue serotype-specific immune response in Aedes aegypti and Aedes albopictus. Mem Inst Oswaldo Cruz. 2017;112:829-37. doi.org/10.1590/0074-02760170182.

  • Chen T-Y, Smartt CT, Shin D. Permethrin resistance in Aedes aegypti affects aspects of vectorial capacity. Insects. 2021;12:71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smartt CT, Richards SL, Anderson SL, Erickson JS. West Nile virus infection alters midgut gene expression in Culex pipiens quinquefasciatus Say (Diptera: Culicidae). Am J Trop Med Hyg. 2009;81:258–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin D, Civana A, Acevedo C, Smartt CT. Transcriptomics of differential vector competence: West Nile virus infection in two populations of Culex pipiens quinquefasciatus linked to ovary development. BMC Genomics. 2014;15:513.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smartt CT, Shin D, Kang S, Tabachnick WJ. Culex quinquefasciatus (Diptera: Culicidae) from Florida transmitted Zika virus. Front Microbiol. 2018;9:768. doi.org/10.3389/fmicb.2018.00768.

  • Villinger J, Mbaya MK, Ouso D, Kipanga PN, Lutomiah J, Masiga DK. Arbovirus and insect-specific virus discovery in Kenya by novel six genera multiplex high-resolution melting analysis. Mol Ecol Res. 2017;17:466–80.

    Article 
    CAS 

    Google Scholar
     

  • Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi—an Asian malarial vector. BMC Microbiol. 2009;9:96.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ricci I, Damiani C, Scuppa P, Mosca M, Crotti E, Rossi P, et al. The yeast Wickerhamomyces anomalus (Pichia anomala) inhabits the midgut and reproductive system of the Asian malaria vector Anopheles stephensi. Environ Microbiol. 2011;13:911–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bozic J, Capone A, Pediconi D, Mensah P, Cappelli A, Valzano M, et al. Mosquitoes can harbour yeasts of clinical significance and contribute to their environmental dissemination. Environ Microbiol Rep. 2017;9:642–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gloria-Soria A, Ayala D, Bheecarry A, Calderon-Arguedas O, Chadee DD, Chiappero M, et al. Global genetic diversity of Aedes aegypti. Mol Ecol. 2016;25:5377–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Severson DW, Behura SK. Genome investigations of vector competence in aedes aegypti to inform novel arbovirus disease control approaches. Insects. 2016;7:58.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Black WC, Bennett KE, Gorrochótegui-Escalante N, Barillas-Mury CV, Fernández-Salas I, de Lourdes MM, et al. Flavivirus susceptibility in Aedes aegypti. Arch Med Res. 2002;33:379–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ross PA, Endersby-Harshman NM, Hoffmann AA. A comprehensive assessment of inbreeding and laboratory adaptation in Aedes aegypti mosquitoes. Evol Appl. 2019;12:572–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee W-S, Webster JA, Madzokere ET, Stephenson EB, Herrero LJ. Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection. Parasit Vectors. 2019;12:165.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez JL, Dimopoulos G. The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. Dev Comp Immunol. 2010;34:625–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angleró-Rodríguez YI, MacLeod HJ, Kang S, Carlson JS, Jupatanakul N, Dimopoulos G. Aedes aegypti molecular responses to Zika virus: modulation of infection by the toll and jak/stat immune pathways and virus host factors. Front Microbiol. 2017;8:2050.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blair CD. Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiol. 2011;6:265–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olson KE, Blair CD. Arbovirus-mosquito interactions: RNAi pathway. Curr Opin Virol. 2015;15:119–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarke TE, Clem RJ. Insect defenses against virus infection: the role of apoptosis. Int Rev Immunol. 2003;22:401–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baron OL, Ursic-Bedoya RJ, Lowenberger CA, Ocampo CB. Differential gene expression from midguts of refractory and susceptible lines of the mosquito, Aedes aegypti, infected with Dengue-2 virus. J Insect Sci. 2010;10:23.

    Article 

    Google Scholar
     

  • Ayers JB, Coatsworth HG, Kang S, Dinglasan RR, Zhou L. Clustered rapid induction of apoptosis limits ZIKV and DENV-2 proliferation in the midguts of Aedes aegypti. Commun Biol. 2021;4:69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kingsolver MB, Huang ZJ, Hardy RW. Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol. 2013;425:4921–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432:1032–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. Elife. 2016;5:e12245.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Behura SK, Gomez-Machorro C, deBruyn B, Lovin DD, Harker BW, Romero-Severson J, et al. Influence of mosquito genotype on transcriptional response to dengue virus infection. Funct Integr Genomics. 2014;14:581–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian G, Shin SW, Cheon H-M, Kokoza V, Raikhel AS. Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2005;102:13568.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shin SW, Kokoza V, Bian G, Cheon H-M, Kim YJ, Raikhel AS. REL1, a homologue of Drosophila dorsal, regulates toll antifungal immune pathway in the female mosquito Aedes aegypti. J Biol Chem. 2005;280:16499–507.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan X, Pike A, Joshi D, Bian G, McFadden MJ, Lu P, et al. The bacterium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Aedes aegypti. ISME J. 2018;12:277–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2012;109:E23-31.

    Article 
    PubMed 

    Google Scholar
     

  • Oliveira JHM, Gonçalves RLS, Lara FA, Dias FA, Gandara ACP, Menna-Barreto RFS, et al. Blood meal-derived heme decreases ROS levels in the midgut of Aedes aegypti and allows proliferation of intestinal microbiota. PLoS Pathog. 2011;7:e1001320.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muturi EJ, Dunlap C, Ramirez JL, Rooney AP, Kim C-H. Host blood-meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiol Ecol. 2019;95(1). doi.org/10.1093/femsec/fiy213.

  • Chouaia B, Rossi P, Montagna M, Ricci I, Crotti E, Damiani C, et al. Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. Appl Environ Microbiol. 2010;76:7444.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scolari F, Casiraghi M, Bonizzoni M. Aedes spp. and their microbiota: a review. Front Microbiol. 2019;10:2036–2036.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minard G, Tran FH, Raharimalala FN, Hellard E, Ravelonandro P, Mavingui P, et al. Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar. FEMS Microbiol Ecol. 2013;83:63–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H, Suzuki Y, et al. Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc Natl Acad Sci USA. 2014;111:12498.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song X, Zhong Z, Gao L, Weiss BL, Wang J. Metabolic interactions between disease-transmitting vectors and their microbiota. Trends Parasitol. 2022;38:697–708.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang M, An Y, Gao L, Dong S, Zhou X, Feng Y, et al. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH. Cell Rep. 2021;35:108992.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cappelli A, Damiani C, Mancini MV, Valzano M, Rossi P, Serrao A, et al. Asaia activates immune genes in mosquito eliciting an anti-Plasmodium response: implications in malaria control. Front Genet. 2019;10:836. doi.org/10.3389/fgene.2019.00836.

  • Kämpfer P, Matthews H, Glaeser SP, Martin K, Lodders N, Faye I. Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae. Int J Syst Evol Microbiol. 2011;61:2670-5. doi.org/10.1099/ijs.0.026393-0.

  • Chen S, Bagdasarian M, Walker ED. Elizabethkingia anophelis: molecular manipulation and interactions with mosquito hosts. Appl Environ Microbiol. 2015;81:2233–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Perrin A, Larsonneur E, Nicholson AC, Edwards DJ, Gundlach KM, Whitney AM, et al. Evolutionary dynamics and genomic features of the Elizabethkingia anophelis 2015 to 2016 Wisconsin outbreak strain. Nat Commun England. 2017;8:15483.

  • Chen S, Johnson BK, Yu T, Nelson BN, Walker ED. Elizabethkingia anophelis: physiologic and transcriptomic responses to iron stress. Front Microbiol. 2020;11:804–804.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Onyango MG, Lange R, Bialosuknia S, Payne A, Mathias N, Kuo L, et al. Zika virus and temperature modulate Elizabethkingia anophelis in Aedes albopictus. Parasit Vectors. 2021;14:573.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stefanini I. Yeast-insect associations: it takes guts. Yeast. 2018;35:315–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malar CM, Wang Y, Stajich JE, Kokkoris V, Villeneuve-Laroche M, Yildirir G, et al. Early branching arbuscular mycorrhizal fungus Paraglomus occultum carries a small and repeat-poor genome compared to relatives in the Glomeromycotina. Microb Genom. 2022;8:000810.

    CAS 

    Google Scholar
     

  • Liu X-Z, Wang Q-M, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, et al. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol. 2015;81:85–147.

    Article 
    PubMed 

    Google Scholar
     

  • Luis P, Vallon L, Tran F-H, Hugoni M, Tran-Van V, Mavingui P, et al. Aedes albopictus mosquitoes host a locally structured mycobiota with evidence of reduced fungal diversity in invasive populations. Fungal Ecol. 2019;39:257–66.

    Article 

    Google Scholar
     

  • Tawidian P, Coon KL, Jumpponen A, Cohnstaedt LW, Michel K. Host-environment interplay shapes fungal diversity in mosquitoes. MSphere. 2021;6:e0064621.

    Article 
    PubMed 

    Google Scholar
     

  • Coon KL, Vogel KJ, Brown MR, Strand M. Mosquitoes rely on their gut microbiota for development. Mol Ecol. 2014;23:2727–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coon KL, Brown MR, Strand M. Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. J Med Entomol. 2016;25:5806–26.

    CAS 

    Google Scholar
     

  • Fang Y, Tambo E, Xue J-B, Zhang Y, Zhou X-N, Khater EIM. Detection of DENV-2 and insect-specific flaviviruses in mosquitoes collected from Jeddah, Saudi Arabia. Front Cell Infect Microbiol. 2021;11:52.

    Article 

    Google Scholar
     

  • Bonica MB, Balcazar DE, Chuchuy A, Barneche JA, Torres C, Micieli MV. Detection of flaviviral-like DNA sequences in Aedes aegypti (Diptera: Culicidae) collected from Argentina. J Med Entomol. 2021;58:2406–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agboli E, Leggewie M, Altinli M, Schnettler E. Mosquito-specific viruses-transmission and interaction. Viruses. 2019;11:873.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ricci I, Valzano M, Ulissi U, Epis S, Cappelli A, Favia G. Symbiotic control of mosquito borne disease. Pathog Glob Health. 2012;106:380–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. Microbiome. 2021;9:111.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, et al. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors. 2022;15:112.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link