An adaptive and robust method for multi-trait analysis of genome-wide association studies using summary statistics

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature 2009;461:747–53.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet. 2013;14:483–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Reilly PF, Hoggart CJ, Pomyen Y, Calboli FCF, Elliott P, Jarvelin MR, et al. MultiPhen: joint model of multiple phenotypes can increase discovery in GWAS. PloS One. 2012;7:e34861.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan W. Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genetic Epidemiology: The Official Publication of the International Genetic Epidemiology. Society 2009;33:497–507.


    Google Scholar
     

  • He Q, Avery CL, Lin DY. A general framework for association tests with multivariate traits in large-scale genomics studies. Genet Epidemiol. 2013;37:759–67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu X, Feng T, Tayo BO, Liang J, Young JH, Franceschini N, et al. Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am J Hum Genet. 2015;96:21–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X, Tian L, Wei LJ. Combining dependent tests for linkage or association across multiple phenotypic traits. Biostatistics 2003;4:223–9.

    Article 
    PubMed 

    Google Scholar
     

  • Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet. 2018;50:229–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Xie J. Cauchy combination test: a powerful test with analytic p-value calculation under arbitrary dependency structures. J Am Stat Assoc. 2020;115:393–402.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Meer D, Frei O, Kaufmann T, Shadrin AA, Devor A, Smeland OB, et al. Understanding the genetic determinants of the brain with MOSTest. Nat Commun. 2020;11:1–9.


    Google Scholar
     

  • Van der Sluis S, Posthuma D, Dolan CV. TATES: efficient multivariate genotype-phenotype analysis for genome-wide association studies. PLoS Genet. 2013;9:e1003235.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Z, Lin X. A geometric perspective on the power of principal component association tests in multiple phenotype studies. J Am Stat Assoc. 2019;114:975–90.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Bai Y, Pan W. An adaptive association test for multiple phenotypes with GWAS summary statistics. Genet Epidemiol. 2015;39:651–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ray D, Boehnke M. Methods for meta-analysis of multiple traits using GWAS summary statistics. Genet Epidemiol. 2018;42:134–45.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Z, Lin X. Multiple phenotype association tests using summary statistics in genome-wide association studies. Biometrics 2018;74:165–75.

    Article 
    PubMed 

    Google Scholar
     

  • Guo B, Wu B. Integrate multiple traits to detect novel trait–gene association using GWAS summary data with an adaptive test approach. Bioinformatics 2019;35:2251–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu C. Multi-trait genome-wide analyses of the brain imaging phenotypes in UK Biobank. Genetics 2020;215:947–58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018;562:203–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elliott LT, Sharp K, Alfaro-Almagro F, Shi S, Miller KL, Douaud G, et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 2018;562:210–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song C, Min X, Zhang H. The screening and ranking algorithm for change-points detection in multiple samples. Ann Appl Stat. 2016;10:2102.

    Article 
    PubMed 

    Google Scholar
     

  • David HA, Nagaraja HN. Order statistics: John Wiley & Sons; 2004.

  • Wu B, Guan W, Pankow JS. On efficient and accurate calculation of significance p-values for sequence kernel association testing of variant set. Ann Hum Genet. 2016;80:123–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aschard H, Vilhjálmsson BJ, Greliche N, Morange PE, Trégouët DA, Kraft P. Maximizing the power of principal-component analysis of correlated phenotypes in genome-wide association studies. Am J Hum Genet. 2014;94:662–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sporns O, Tononi G, Kötter R. The human connectome: a structural description of the human brain. PLoS Comput Biol. 2005;1:e42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi Xa HuX, Xie Y, Wu H. A novel CERNNE approach for predicting Parkinson’s Disease-associated genes and brain regions based on multimodal imaging genetics data. Med Image Anal. 2021;67:101830.

    Article 
    PubMed 

    Google Scholar
     

  • Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulz H, Ruppert AK, Herms S, Wolf C, Mirza-Schreiber N, Stegle O, et al. Genome-wide mapping of genetic determinants influencing DNA methylation and gene expression in human hippocampus. Nat Commun. 2017;8:1511.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, et al. Database resources of the national center for biotechnology information. Nucleic acids Res. 2021;49:D10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe K, Taskesen E, Van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1–11.

    Article 
    CAS 

    Google Scholar
     

  • Li MX, Yeung JMY, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet. 2012;131:747–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chambers T, Escott-Price V, Legge S, Baker E, Singh KD, Walters JTR, et al. Genetic common variants associated with cerebellar volume and their overlap with mental disorders: a study on 33,265 individuals from the UK-Biobank. Mol Psychiatry. 2022;27:2282–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith SM, Douaud G, Chen W, Hanayik T, Alfaro-Almagro F, Sharp K, et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat Neurosci. 2021;24:737–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao B, Luo T, Li T, Li Y, Zhang J, Shan Y, et al. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat Genet. 2019;51:1637–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao B, Zhang J, Ibrahim JG, Luo T, Santelli RC, Li Y, et al. Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n= 17,706). Mol Psychiatry. 2021;26:3943–55.

    Article 
    PubMed 

    Google Scholar
     

  • Van Der Meer D, Kaufmann T, Shadrin AA, Makowski C, Frei O, Roelfs D, et al. The genetic architecture of human cortical folding. Sci Adv 2021;7:eabj9446.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5.

    Article 
    CAS 

    Google Scholar
     

  • Hofer E, Roshchupkin GV, Adams HHH, Knol MJ, Lin H, Li S, et al. Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nat Commun. 2020;11:1–16.

    Article 

    Google Scholar
     

  • van Der Lee SJ, Knol MJ, Chauhan G, Satizabal CL, Smith AV, Hofer E, et al. A genome-wide association study identifies genetic loci associated with specific lobar brain volumes. Commun Biol. 2019;2:285.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link