ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins

  • Kingwell, K. T cell receptor therapeutics hit the immuno-oncology stage. Nat. reviews. Drug Discov. www.nature.com/articles/d41573-022-00073-7 (2022).

  • Kaplon, H., Chenoweth, A., Crescioli, S. & Reichert, J. M. Antibodies to watch in 2022. mAbs 14, 2014296 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, R.-M. et al. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27, 1–30 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, E. Y. & Shah, K. Nanobodies: next generation of cancer diagnostics and therapeutics. Front. Oncol. 10, 1182 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regep, C., Georges, G., Shi, J., Popovic, B. & Deane, C. M. The H3 loop of antibodies shows unique structural characteristics. Proteins Struct. Funct., Bioinform. 85, 1311–1318 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Tsuchiya, Y. & Mizuguchi, K. The diversity of H3 loops determines the antigen-binding tendencies of antibody CDR loops. Protein Sci. 25, 815–825 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong, W. K., Leem, J. & Deane, C. M. Comparative analysis of the CDR loops of antigen receptors. Front. Immunol. 10, 2454 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, L. S. & Colwell, L. J. Comparative analysis of nanobody sequence and structure data. Proteins: Struct. Funct. Bioinform. 86, 697–706 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kovaltsuk, A. et al. Observed antibody space: a resource for data mining next-generation sequencing of antibody repertoires. J. Immunol. 201, 2502–2509 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Olsen, T. H., Boyles, F. & Deane, C. M. Observed antibody space: a diverse database of cleaned, annotated, and translated unpaired and paired antibody sequences. Protein Sci. 31, 141–146 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunbar, J. et al. SAbDab: the structural antibody database. Nucleic Acids Res. 42, D1140–D1146 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leem, J., de Oliveira, S. H. P., Krawczyk, K. & Deane, C. M. STCRDab: the structural T-cell receptor database. Nucleic Acids Res. 46, D406–D412 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, C., Raybould, M. I. & Deane, C. M. SAbDab in the age of biotherapeutics: updates including SAbDab-nano, the nanobody structure tracker. Nucleic Acids Res. 50, D1368–D1372 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiu, M. L., Goulet, D. R., Teplyakov, A. & Gilliland, G. L. Antibody structure and function: the basis for engineering therapeutics. Antibodies 8, 55 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, S. A. et al. Epitope profiling using computational structural modelling demonstrated on coronavirus-binding antibodies. PLoS Comput. Biol. 17, e1009675 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ambrosetti, F., Jiménez-García, B., Roel-Touris, J. & Bonvin, A. M. Modeling antibody-antigen complexes by information-driven docking. Structure 28, 119–129 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, C., Buchanan, A., Taddese, B. & Deane, C. M. DLAB: deep learning methods for structure-based virtual screening of antibodies. Bioinformatics 38, 377–383 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Slabinski, L. et al. The challenge of protein structure determination-lessons from structural genomics. Protein Sci. 16, 2472–2482 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, A. J. et al. Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires. Mol. Syst. Des. Eng. 4, 701–736 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nielsen, S. C. & Boyd, S. D. Human adaptive immune receptor repertoire analysis-past, present, and future. Immunol. Rev. 284, 9–23 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv (2021).

  • Lin, Z. et al. Language models of protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv (2022).

  • Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruffolo, J. A., Chu, L.-S., Mahajan, S. P. & Gray, J. J. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nat. Commun. 14, 2389 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wong, W. K. et al. TCRBuilder: multi-state T-cell receptor structure prediction. Bioinformatics 36, 3580–3581 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruffolo, J. A., Sulam, J. & Gray, J. J. Antibody structure prediction using interpretable deep learning. Patterns 3, 100406 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruffolo, J. A., Guerra, C., Mahajan, S. P., Sulam, J. & Gray, J. J. Geometric potentials from deep learning improve prediction of CDR H3 loop structures. Bioinformatics 36, i268–i275 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Improved protein structure prediction using predicted interresidue orientations. Proc. Natl Acad. Sci. 117, 1496–1503 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cohen, T., Halfon, M. & Schneidman-Duhovny, D. Nanonet: rapid and accurate end-to-end nanobody modeling by deep learning. Front. Immunol. 13, 958584 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. H. et al. Equifold: Protein structure prediction with a novel coarse-grained structure representation. bioRxiv (2022).

  • Leem, J., Dunbar, J., Georges, G., Shi, J. & Deane, C. M. ABodyBuilder: automated antibody structure prediction with data-driven accuracy estimation. MAbs 8, 1259–1268 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abanades, B., Georges, G., Bujotzek, A. & Deane, C. M. ABlooper: fast accurate antibody CDR loop structure prediction with accuracy estimation. Bioinformatics 38, 1877–1880 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lefranc, M.-P. et al. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Deve. Comp. Immunol. 27, 55–77 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Eyal, E., Gerzon, S., Potapov, V., Edelman, M. & Sobolev, V. The limit of accuracy of protein modeling: influence of crystal packing on protein structure. J. Mol. Biol. 351, 431–442 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schritt, D. et al. Repertoire builder: high-throughput structural modeling of b and t cell receptors. Mol. Syst. Des. Eng. 4, 761–768 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Maier, J. K. & Labute, P. Assessment of fully automated antibody homology modeling protocols in molecular operating environment. Proteins: Struct., Funct. Bioinforma 82, 1599–1610 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Dunbar, J., Fuchs, A., Shi, J. & Deane, C. M. ABangle: characterising the VH-VL orientation in antibodies. Protein Eng., Des. Select. 26, 611–620 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Leem, J., Georges, G., Shi, J. & Deane, C. M. Antibody side-chain conformations are position-dependent. Proteins: Struct., Funct., Bioinforma. 86, 383–392 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Tien, M. Z., Meyer, A. G., Sydykova, D. K., Spielman, S. J. & Wilke, C. O. Maximum allowed solvent accessibilites of residues in proteins. PloS One 8, e80635 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eastman, P. et al. OpenMM 7: rapid development of high-performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265 (2019).

  • Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schreiner, E., Trabuco, L. G., Freddolino, P. L. & Schulten, K. Stereochemical errors and their implications for molecular dynamics simulations. BMC Bioinform. 12, 1–9 (2011).

    Article 

    Google Scholar
     

  • Dunbar, J. & Deane, C. M. ANARCI: antigen receptor numbering and receptor classification. Bioinformatics 32, 298–300 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Read more here: Source link