The draft genome sequence of the Japanese rhinoceros beetle Trypoxylus dichotomus septentrionalis towards an understanding of horn formation

  • Hunt, T. et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318, 1913–1916 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Crowson, R. A. The phylogeny of coleoptera. Annu. Rev. Entomol. 5, 111–134 (1960).

    Article 

    Google Scholar
     

  • Darwin, C. The Descent of Man, and Selection in Relation to Sex (London, 1871).

  • Linné, C. Mantissa Plantarum: Generum Editionis VI (Impensis Direct. Laurentii Salvii, 1771).

  • Ahrens, D., Schwarzer, J. & Vogler, A. P. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proc. R. Soc. B Biol. Sci. 281, 20141470 (2014).

    Article 

    Google Scholar
     

  • Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mckenna, D. D. et al. The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 40, 835–880 (2015).

    Article 

    Google Scholar
     

  • Jin, H., Yonezawa, T., Zhong, Y., Kishino, H. & Hasegawa, M. Cretaceous origin of giant rhinoceros beetles (Dynastini; Coleoptera) and correlation of their evolution with the Pangean breakup. Genes Genet. Syst. 91, 209–215 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hongo, Y. Evolution of male dimorphic allometry in a population of the Japanese horned beetle Trypoxylus dichotomus septentrionalis. Behav. Ecol. Sociobiol. 62, 245–253 (2007).

    Article 

    Google Scholar
     

  • McCullough, E. L., Tobalske, B. W. & Emlen, D. J. Structural adaptations to diverse fighting styles in sexually selected weapons. Proc. Natl. Acad. Sci. 111, 14484–14488 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito, Y. et al. The role of doublesex in the evolution of exaggerated horns in the Japanese rhinoceros beetle. EMBO Rep. 14, 561–567 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morita, S. et al. Precise staging of beetle horn formation in Trypoxylus dichotomus reveals the pleiotropic roles of doublesex depending on the spatiotemporal developmental contexts. PLOS Genet. 15, e1008063 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337, 860–864 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gotoh, H. et al. The Fat/Hippo signaling pathway links within-disc morphogen patterning to whole-animal signals during phenotypically plastic growth in insects. Dev. Dyn. 244, 1039–1045 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ohde, T. et al. Rhinoceros beetle horn development reveals deep parallels with dung beetles. PLOS Genet. 14, e1007651 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adachi, H., Matsuda, K., Niimi, T., Kondo, S. & Gotoh, H. Genetical control of 2D pattern and depth of the primordial furrow that prefigures 3D shape of the rhinoceros beetle horn. Sci. Rep. 10, 18687 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakura, K., Morita, S. & Niimi, T. RNA Interference Method for Gene Function Analysis in the Japanese Rhinoceros Beetle Trypoxylus dichotomus. Bio Protoc. 12, e4396 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zinna, R. et al. Sexual dimorphism and heightened conditional expression in a sexually selected weapon in the Asian rhinoceros beetle. Mol. Ecol. 27, 5049–5072 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Matsuda, K. et al. Complex furrows in a 2D epithelial sheet code the 3D structure of a beetle horn. Sci. Rep. 7, 13939 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muller, G. B. & Wagner, G. P. Novelty in evolution: Restructuring the concept.

  • Emlen, D. J., Lavine, L. C. & Ewen-Campen, B. On the origin and evolutionary diversification of beetle horns. Proc. Natl. Acad. Sci. 104, 8661–8668 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCullough, E. L., Ledger, K. J., O’Brien, D. M. & Emlen, D. J. Variation in the allometry of exaggerated rhinoceros beetle horns. Anim. Behav. 109, 133–140 (2015).

    Article 

    Google Scholar
     

  • Hongo, Y. Appraising behaviour during male-male Interaction in the Japanese horned beetle Trypoxylus dichotomus septentrionalis (Kono). Behaviour 140, 501–517 (2003).

    Article 

    Google Scholar
     

  • McCullough, E. L. & Zinna, R. A. Sensilla density corresponds to the regions of the horn most frequently used during combat in the giant rhinoceros beetle Trypoxylus dichotomus (Coleoptera: Scarabaeidae: Dynastinae). Ann. Entomol. Soc. Am. 106(4), 518–523 (2013).

    Article 

    Google Scholar
     

  • Karino, K. & Niiyama, H. Males with short horns spent more time mating in the Japanese horned beetle Allomyrina dichotoma. Acta Ethol. 9, 95–98 (2006).

    Article 

    Google Scholar
     

  • Siva-Jothy, M. T. Mate securing tactics and the cost of fighting in the Japanese horned beetle, Allomyrina dichotoma L. (Scarabaeidae). J. Ethol. 5, 165–172 (1987).

    Article 

    Google Scholar
     

  • del Sol, J. F. et al. Population differences in the strength of sexual selection match relative weapon size in the Japanese rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae)†. Evolution 75, 394–413 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, J., Dai, G., Xu, Y. & Iwamoto, M. Optimal composite structures in the forewings of beetles. Compos. Struct. 81, 432–437 (2007).

    Article 

    Google Scholar
     

  • Tuo, W., Chen, J., Wu, Z., Xie, J. & Wang, Y. Characteristics of the tensile mechanical properties of fresh and dry forewings of beetles. Mater. Sci. Eng. C 65, 51–58 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. et al. The deformation mode and strengthening mechanism of compression in the beetle elytron plate. Mater. Des. 131, 481–486 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chen, J., Zhang, X., Okabe, Y., Xie, J. & Xu, M. Beetle elytron plate and the synergistic mechanism of a trabecular-honeycomb core structure. Sci. China Technol. Sci. 62, 87–93 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Truong, T. V. et al. Flow visualization of rhinoceros beetle (Trypoxylus dichotomus) in free flight. J. Bionic Eng. 9, 304–314 (2012).

    Article 

    Google Scholar
     

  • Takeishi, H. et al. Xylanolytic and alkaliphilic Dietzia sp. isolated from larvae of the Japanese horned beetle, Trypoxylus dichotomus. Actinomycetologica 20, 49–54 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Aizawa, T., Urai, M., Iwabuchi, N., Nakajima, M. & Sunairi, M. Bacillus trypoxylicola sp. Nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis). Int. J. Syst. Evol. Microbiol. 60, 61–66 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wada, N. et al. Glycolytic activities in the larval digestive tract of Trypoxylus dichotomus (Coleoptera: Scarabaeidae). Insects 5, 351–363 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wada, N. et al. Site-specific profiles of biochemical properties in the larval digestive tract of Japanese rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae). Entomol. Sci. 23, 33–43 (2020).

    Article 

    Google Scholar
     

  • Miyanoshita, A. et al. Isolation and characterization of a new member of the insect defensin family from a beetle, Allomyrina dichotoma. Biochem. Biophys. Res. Commun. 220, 526–531 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saido-Sakanaka, H., Ishibashi, J., Sagisaka, A., Momotani, E. & Yamakawa, M. Synthesis and characterization of bactericidal oligopeptides designed on the basis of an insect anti-bacterial peptide. Biochem. J. 338, 29–33 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saido-Sakanaka, H., Ishibashi, J., Momotani, E., Amano, F. & Yamakawa, M. In vitro and in vivo activity of antimicrobial peptides synthesized based on the insect defensin. Peptides 25, 19–27 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koyama, Y. et al. Cytotoxicity and antigenicity of antimicrobial synthesized peptides derived from the beetle Allomyrina dichotoma defensin in mice. Int. Immunopharmacol. 6, 1748–1753 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwasaki, T., Ishibashi, J., Kubo, M., Taylor, D. & Yamakawa, M. Multiple functions of short synthetic enantiomeric peptides based on beetle defensins. Biosci. Biotechnol. Biochem. 73, 683–687 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwasaki, T. et al. Selective cancer cell cytotoxicity of enantiomeric 9-mer peptides derived from beetle defensins depends on negatively charged phosphatidylserine on the cell surface. Peptides 30, 660–668 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwasaki, T. et al. In vitro activity of diastereomeric antimicrobial peptides alone and in combination with antibiotics against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. J. Insect Biotechnol. Sericology 76, 25–29 (2007).

    CAS 

    Google Scholar
     

  • Hamanaka, T. et al. Anti-prion activity found in beetle grub hemolymph of Trypoxylus dichotomus septentrionalis. Biochem. Biophys. Rep. 3, 32–37 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogata, N. Whole-genome sequence of the Trypoxylus dichotomus Japanese rhinoceros beetle. MicroPublication Biol. doi.org/10.17912/micropub.biology.000487 (2021).

    Article 

    Google Scholar
     

  • Wang, Q., Liu, L., Zhang, S., Wu, H. & Huang, J. A chromosome-level genome assembly and intestinal transcriptome of Trypoxylus dichotomus (Coleoptera: Scarabaeidae) to understand its lignocellulose digestion ability. GigaScience 11, giac059 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of diploid genome sequences. Genome Res. 27, 757–767 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. doi.org/10.1093/nar/gkw955 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donath, A. et al. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 47, 10543–10552 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greiner, S., Lehwark, P. & Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47, W59–W64 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smit, A. & Hubley, R. RepeatModeler Open-1.0 (2008).

  • Smit, A., Hubley, R. & Green, P. RepeatMasker. Open-4.0 (2013).

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: Automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genomics Bioinform. 3, lqaa108 (2021).

    Article 

    Google Scholar
     

  • Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness. In Gene Prediction: Methods and Protocols (ed. Kollmar, M.) 227–245 (Springer, 2019).


    Google Scholar
     

  • Skinner, M. E., Uzilov, A. V., Stein, L. D., Mungall, C. J. & Holmes, I. H. JBrowse: A next-generation genome browser. Genome Res. 19, 1630–1638 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16, 157 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krueger, F. Trim Galore (RRID: SCR_011847). github.com/FelixKrueger/TrimGalore (2015).

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article 

    Google Scholar
     

  • Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, J., Nishiyama, T., Shimizu, K. & Kadota, K. TCC: An R package for comparing tag count data with robust normalization strategies. BMC Bioinform. 14, 219 (2013).

    Article 

    Google Scholar
     

  • Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, 1–45 (2005).

    Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).

    Article 

    Google Scholar
     

  • Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabanettes, F. & Klopp, C. D-GENIES: Dot plot large genomes in an interactive, efficient and simple way. PeerJ 6, e4958 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Herndon, N. et al. Enhanced genome assembly and a new official gene set for Tribolium castaneum. BMC Genomics 21, 47 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, H. et al. Phylogeny and biogeography of the Japanese rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae) based on SNP markers. Ecol. Evol. 11, 153–173 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Mistry, J. et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mi, H. et al. PANTHER version 16: A revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 49, D394–D403 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1–6 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moczek, A. P. & Kijimoto, T. Development and evolution of insect polyphenisms: Novel insights through the study of sex determination mechanisms. Curr. Opin. Insect Sci. 1, 52–58 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Grimaldi, D., Engel, M. S., Engel, M. S. & Engel, S. C. Evolution of the Insects (Cambridge University Press, 2005).

    MATH 

    Google Scholar
     

  • Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, S., Huang, Z. Y. & Zhang, J. Sex-specific splicing of the honeybee doublesex gene reveals 300 million years of evolution at the bottom of the insect sex-determination pathway. Genetics 177, 1733–1741 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kijimoto, T., Moczek, A. P. & Andrews, J. Diversification of doublesex function underlies morph-, sex-, and species-specific development of beetle horns. Proc. Natl. Acad. Sci. 109, 20526–20531 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gotoh, H. et al. Molecular cloning and functional characterization of the sex-determination gene doublesex in the sexually dimorphic broad-horned beetle Gnatocerus cornutus (Coleoptera, Tenebrionidae). Sci. Rep. 6, 29337 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link