Discrimination of monozygotic twins using mtDNA heteroplasmy through probe capture enrichment and massively parallel sequencing

  • Oosthuizen T, Howes LM (2022) The development of forensic DNA analysis: new debates on the issue of fundamental human rights. Forensic Sci Int Genet 56:102606

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nwawuba Stanley U et al (2020) Forensic DNA profiling: autosomal short tandem repeat as a prominent marker in crime investigation. Malays J Med Sci 27(4):22–35

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu QN, Li CT, Liu XL (2018) Research progress on discrimination of monozygotic twins. Fa Yi Xue Za Zhi 34(6):672–677

    CAS 
    PubMed 

    Google Scholar
     

  • Yang YR et al (2012) Progress on epigenetics applications in forensic science. Fa Yi Xue Za Zhi 28(5):366–370

    CAS 
    PubMed 

    Google Scholar
     

  • Vidaki A, Daniel B, Court DS (2013) Forensic DNA methylation profiling–potential opportunities and challenges. Forensic Sci Int Genet 7(5):499–507

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marqueta-Gracia JJ et al (2018) Differentially methylated CpG regions analyzed by PCR-high resolution melting for monozygotic twin pair discrimination. Forensic Sci Int Genet 37:e1–e5

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castellani CA et al (2014) Biological relevance of CNV calling methods using familial relatedness including monozygotic twins. BMC Bioinformatics 15:114

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Planterose Jimenez B et al (2021) Equivalent DNA methylation variation between monozygotic co-twins and unrelated individuals reveals universal epigenetic inter-individual dissimilarity. Genome Biol 22(1):18

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao C et al (2019) Differences of microRNA expression profiles between monozygotic twins’ blood samples. Forensic Sci Int Genet 41:152–158

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nistico L et al (2006) Concordance, disease progression, and heritability of coeliac disease in Italian twins. Gut 55(6):803–808

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sites ER et al (2017) Analysis of copy number variants in 11 pairs of monozygotic twins with neurofibromatosis type 1. Am J Med Genet A 173(3):647–653

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stewart JB, Chinnery PF (2021) Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet 22(2):106–118

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson S et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290(5806):457–465

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiaratti MR, Chinnery PF (2022) Modulating mitochondrial DNA mutations: factors shaping heteroplasmy in the germ line and somatic cells. Pharmacol Res 185:106466

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uchiumi T, Kang D (2012) The role of TFAM-associated proteins in mitochondrial RNA metabolism. Biochim Biophys Acta 1820(5):565–570

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yasukawa T, Kang D (2018) An overview of mammalian mitochondrial DNA replication mechanisms. J Biochem 164(3):183–193

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy SR et al (2013) Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet 9(9):e1003794

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Legati A et al (2021) Current and new next-generation sequencing approaches to study mitochondrial DNA. J Mol Diagn 23(6):732–741

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mertens J et al (2019) Detection of heteroplasmic variants in the mitochondrial genome through massive parallel sequencing. Bio Protoc 9(13):e3283

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z et al (2015) Differentiating between monozygotic twins through next-generation mitochondrial genome sequencing. Anal Biochem 490:1–6

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McElhoe JA et al (2014) Development and assessment of an optimized next-generation DNA sequencing approach for the mtgenome using the Illumina MiSeq. Forensic Sci Int Genet 13:20–29

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu H et al (2022) Hot spots-making directed evolution easier. Biotechnol Adv 56:107926

    Article 
    PubMed 

    Google Scholar
     

  • Chen L et al (2020) Highly accurate mtGenome haplotypes from long-read SMRT sequencing can distinguish between monozygotic twins. Forensic Sci Int Genet 47:102306

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaudin M, Desnues C (2018) Hybrid capture-based next generation sequencing and its application to human infectious diseases. Front Microbiol 9:2924

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shih, S.Y., et al., Correction: Shelly Y. Shih; et al.; Applications of probe capture enrichment next generation sequencing for whole mitochondrial genome and 426 nuclear SNPs for forensically challenging samples. Genes 2018, 9, 49.

  • Yin L et al (2021) Validation of the Microreader 28A ID System: A 6-dye multiplex amplification assay for forensic application. Electrophoresis 42(19):1928–1935

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shih SY et al (2018) Applications of probe capture enrichment next generation sequencing for whole mitochondrial genome and 426 nuclear SNPs for forensically challenging samples. Genes (Basel) 9(1)

  • Lang J et al (2021) Evaluation of the MGISEQ-2000 sequencing platform for illumina target capture sequencing libraries. Front Genet 12:730519

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S et al (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna A et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang H, Wang K (2015) Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10(10):1556–1566

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bensasson D et al (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 16(6):314–321

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parakatselaki ME, Ladoukakis ED (2021) mtDNA heteroplasmy: origin, detection, significance, and evolutionary consequences. Life (Basel) 11(7):633

    CAS 
    PubMed 

    Google Scholar
     

  • Vidaki A et al (2017) Epigenetic discrimination of identical twins from blood under the forensic scenario. Forensic Sci Int Genet 31:67–80

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu J et al (2015) LINE-1 DNA methylation: a potential forensic marker for discriminating monozygotic twins. Forensic Sci Int Genet 19:136–145

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang N et al (2015) Intra-monozygotic twin pair discordance and longitudinal variation of whole-genome scale DNA methylation in adults. PLoS One 10(8):e0135022

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vidaki A et al (2018) Investigating the epigenetic discrimination of identical twins using buccal swabs, saliva, and cigarette butts in the forensic setting. Genes (Basel) 9(5):252

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang C et al (2019) MicroRNA profile analysis for discrimination of monozygotic twins using massively parallel sequencing and real-time PCR. Forensic Sci Int Genet 38:23–31

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li D et al (2022) Advances in bioactivity of MicroRNAs of plant-derived exosome-like nanoparticles and milk-derived extracellular vesicles. J Agric Food Chem 70(21):6285–6299

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang H et al (2014) The origin, function, and diagnostic potential of extracellular microRNAs in human body fluids. Wiley Interdiscip Rev RNA 5(2):285–300

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rolf B, Krawczak M (2021) The germlines of male monozygotic (MZ) twins: Very similar, but not identical. Forensic Sci Int Genet 50:102408

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burr SP, Chinnery PF (2022) Measuring single-cell mitochondrial DNA copy number and heteroplasmy using digital droplet polymerase chain reaction. J Vis Exp 185:e63870


    Google Scholar
     

  • Abd Radzak SM et al (2022) Insights regarding mitochondrial DNA copy number alterations in human cancer (Review). Int J Mol Med 50(2):1–8

    Article 

    Google Scholar
     

  • Wang Y et al (2022) Genetic landscape of human mitochondrial genome using whole-genome sequencing. Hum Mol Genet 31(11):1747–1761

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dulovic-Mahlow M et al (2021) Discordant monozygotic parkinson disease twins: role of mitochondrial integrity. Ann Neurol 89(1):158–164

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin D et al (2022) Gapless genome assembly of East Asian finless porpoise. Sci Data 9(1):765

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun Y et al (2021) Characterizing sensitivity and coverage of clinical WGS as a diagnostic test for genetic disorders. BMC Med Genomics 14(1):102

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee J, Jung J (2022) First record of the complete mitochondrial genome of Tubifex tubifex (Muller) 1774 (Annelida; Clitellata; Oligochaeta) and phylogenetic analysis. Mitochondrial DNA B Resour 7(7):1208–1210

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeon SA et al (2021) Comparison between MGI and Illumina sequencing platforms for whole genome sequencing. Genes Genomics 43(7):713–724

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu K et al (2021) Comparative Performance of the MGISEQ-2000 and Illumina X-Ten Sequencing Platforms for Paleogenomics. Front Genet 12:745508

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korostin D et al (2020) Comparative analysis of novel MGISEQ-2000 sequencing platform vs Illumina HiSeq 2500 for whole-genome sequencing. PLoS One 15(3):e0230301

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bardan F, Higgins D, Austin JJ (2023) A custom hybridisation enrichment forensic intelligence panel to infer biogeographic ancestry, hair and eye colour, and Y chromosome lineage. Forensic Sci Int Genet 63:102822

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bose N et al (2018) Target capture enrichment of nuclear SNP markers for massively parallel sequencing of degraded and mixed samples. Forensic Sci Int Genet 34:186–196

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tu J et al (2015) Systematic characteristic exploration of the chimeras generated in multiple displacement amplification through next generation sequencing data reanalysis. PLoS One 10(10):e0139857

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link