Detailed analysis of an enriched deep intronic ABCA4 variant in Irish Stargardt disease patients

  • Allikmets, R. et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat. Genet. 15, 236–246 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanna, P., Strauss, R. W., Fujinami, K. & Michaelides, M. Stargardt disease: Clinical features, molecular genetics, animal models and therapeutic options. Br. J. Ophthalmol. 101, 25–30 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Blacharski, P. A. & Newsome, D. A. Bilateral macular holes after Nd:YAG laser posterior capsulotomy. Am. J. Ophthalmol. 105, 417–418 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cremers, F. P. M., Lee, W., Collin, R. W. J. & Allikmets, R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog. Retin. Eye Res. 79, 100861. doi.org/10.1016/j.preteyeres.2020.100861 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lenis, T. L. et al. Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration. Proc. Natl. Acad. Sci. 115, E11120–E11127 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quazi, F., Lenevich, S. & Molday, R. S. ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer. Nat. Commun. 3, 925 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Quazi, F. & Molday, R. S. Differential phospholipid substrates and directional transport by ATP-binding cassette proteins ABCA1, ABCA7, and ABCA4 and disease-causing mutants. J. Biol. Chem. 288, 34414–34426 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quazi, F. & Molday, R. S. ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal. Proc. Natl. Acad. Sci. 111, 5024–5029 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burke, T. R. et al. Quantitative fundus autofluorescence in recessive Stargardt disease. Invest. Ophthalmol. Vis. Sci. 55, 2841–2852 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sparrow, J. R. & Boulton, M. RPE lipofuscin and its role in retinal pathobiology. Exp. Eye Res. 80, 595–606 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sparrow, J. R. et al. The bisretinoids of retinal pigment epithelium. Prog. Retin. Eye Res. 31, 121–135 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sparrow, J. R., Hicks, D. & Hamel, C. P. The retinal pigment epithelium in health and disease. Curr. Mol. Med. 10, 802–823 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ClinVar. www.ncbi.nlm.nih.gov/clinvar/.

  • Cornelis, S. S. et al. In silico functional meta-analysis of 5962 ABCA4 variants in 3,928 retinal dystrophy cases. Hum. Mutat. 38, 400–408 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fakin, A. et al. The effect on retinal structure and function of 15 specific ABCA4 mutations: A detailed examination of 82 hemizygous patients. Invest. Ophthalmol. Vis. Sci. 57, 5963–5973 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cremers, F. P. et al. Autosomal recessive retinitis pigmentosa and cone-rod dystrophy caused by splice site mutations in the Stargardt’s disease gene ABCR. Hum. Mol. Genet. 7, 355–362 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Runhart, E. H. et al. The common ABCA4 variant p.Asn1868Ile shows nonpenetrance and variable expression of Stargardt disease when present in trans with severe variants. Invest. Ophthalmol. Vis. Sci. 59, 3220–3231 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fakin, A. et al. Phenotype and progression of retinal degeneration associated with nullizigosity of ABCA4. Invest. Ophthalmol. Vis. Sci. 57, 4668–4678 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Runhart, E. H. et al. Association of sex with frequent and mild ABCA4 alleles in Stargardt disease. JAMA Ophthalmol. 138, 1035–1042 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maugeri, A. et al. The 2588G–>C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am. J. Hum. Genet. 64, 1024–1035 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rivera, A. et al. A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am. J. Hum. Genet. 67, 800–813 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaakson, K. et al. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. Hum. Mutat. 22, 395–403 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maia-Lopes, S. et al. ABCA4 mutations in Portuguese Stargardt patients: Identification of new mutations and their phenotypic analysis. Mol. Vis. 15, 584–591 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, M. et al. Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genet. Med. Off. J. Am. Coll. Med. Genet. doi.org/10.1038/s41436-020-0787-4 (2020).

    Article 

    Google Scholar
     

  • Albert, S. et al. Identification and rescue of splice defects caused by two neighboring deep-intronic ABCA4 mutations underlying Stargardt disease. Am. J. Hum. Genet. 102, 517–527 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bauwens, M. et al. ABCA4-associated disease as a model for missing heritability in autosomal recessive disorders: Novel noncoding splice, cis-regulatory, structural, and recurrent hypomorphic variants. Genet. Med. Off. J. Am. Coll. Med. Genet. 21, 1761–1771 (2019).

    CAS 

    Google Scholar
     

  • Bauwens, M. et al. An augmented ABCA4 screen targeting noncoding regions reveals a deep intronic founder variant in Belgian Stargardt patients. Hum. Mutat. 36, 39–42 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bax, N. M. et al. Heterozygous deep-intronic variants and deletions in ABCA4 in persons with retinal dystrophies and one exonic ABCA4 variant. Hum. Mutat. 36, 43–47 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sangermano, R. et al. Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides. Genet. Med. 21, 1751–1760 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulz, H. L. et al. Mutation spectrum of the ABCA4 gene in 335 Stargardt disease patients from a multicenter german cohort-impact of selected deep intronic variants and common SNPs. Invest. Ophthalmol. Vis. Sci. 58, 394–403 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zernant, J. et al. Extremely hypomorphic and severe deep intronic variants in the ABCA4 locus result in varying Stargardt disease phenotypes. Cold Spring Harb. Mol. Case Stud. 4, a002733 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sangermano, R. et al. ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res. 28, 100–110 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braun, T. A. et al. Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease. Hum. Mol. Genet. 22, 5136–5145 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay. BMC Biol. 7, 23 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caminsky, N., Mucaki, E. J. & Rogan, P. K. Interpretation of mRNA splicing mutations in genetic disease: Review of the literature and guidelines for information-theoretical analysis. F1000Research 3, 282 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, M. et al. Detailed phenotyping and therapeutic strategies for intronic ABCA4 variants in Stargardt disease. Mol. Ther. Nucleic Acids 21, 412–427 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aukrust, I. et al. The intronic ABCA4 c.5461–10T>C variant, frequently seen in patients with Stargardt disease, causes splice defects and reduced ABCA4 protein level. Acta Ophthalmol. (Copenh.) 95, 240–246 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sangermano, R. et al. Photoreceptor progenitor mRNA analysis reveals exon skipping resulting from the ABCA4 c.5461–10T→C mutation in stargardt disease. Ophthalmology 123, 1375–1385 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Matynia, A. et al. Assessing variant causality and severity using retinal pigment epithelial cells derived from stargardt disease patients. Transl. Vis. Sci. Technol. 11, 33 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, M. et al. Cost-effective molecular inversion probe-based ABCA4 sequencing reveals deep-intronic variants in Stargardt disease. Hum. Mutat. 40, 1749–1759 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zernant, J. et al. Analysis of the ABCA4 genomic locus in Stargardt disease. Hum. Mol. Genet. 23, 6797–6806 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • gnomAD. gnomad.broadinstitute.org/.

  • Cornelis, S. S. et al. Genetic risk estimates for offspring of patients with Stargardt disease. medRxiv doi.org/10.1101/2021.08.11.21261888v1 (2021).

    Article 

    Google Scholar
     

  • Lee, W. et al. Complex inheritance of ABCA4 disease: Four mutations in a family with multiple macular phenotypes. Hum. Genet. 135, 9–19 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lois, N., Holder, G. E., Bunce, C., Fitzke, F. W. & Bird, A. C. Phenotypic subtypes of stargardt macular dystrophy-fundus flavimaculatus. Arch. Ophthalmol. 119, 359–369 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. Off. J. Am. Coll. Med. Genet. 17, 405–424 (2015).


    Google Scholar
     

  • Parfitt, D. A. et al. Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups. Cell Stem Cell 18, 769–781 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q. & Krainer, A. R. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 31, 3568–3571 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whelan, L. et al. Findings from a genotyping study of over 1000 people with inherited retinal disorders in Ireland. Genes 11, 105 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dockery, A. et al. Target 5000: Target capture sequencing for inherited retinal degenerations. Genes 8, 304 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carrigan, M. et al. Panel-based population next-generation sequencing for inherited retinal degenerations. Sci. Rep. 6, 33248 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rehman, A. U. et al. Exploring the genetic landscape of retinal diseases in north-western Pakistan reveals a high degree of autozygosity and a prevalent founder mutation in ABCA4. Genes 11, 12 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Motta, F. L. et al. Pathogenicity reclasssification of RPE65 missense variants related to leber congenital amaurosis and early-onset retinal dystrophy. Genes 11, 24 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishiguchi, K. M. et al. A founder Alu insertion in RP1 gene in Japanese patients with retinitis pigmentosa. Jpn. J. Ophthalmol. 64, 346–350 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Auslender, N. et al. Four USH2A founder mutations underlie the majority of Usher syndrome type 2 cases among non-Ashkenazi Jews. Genet. Test. 12, 289–294 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan, A. O., Bergmann, C., Eisenberger, T. & Bolz, H. J. A TULP1 founder mutation, p.Gln301*, underlies a recognisable congenital rod-cone dystrophy phenotype on the Arabian Peninsula. Br. J. Ophthalmol. 99, 488–492 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Avela, K. et al. A founder mutation in CERKL is a major cause of retinal dystrophy in Finland. Acta Ophthalmol. (Copenh.) 96, 183–191 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Consultations – Department of Foreign Affairs. www.dfa.ie/global-irish/consultations/.

  • Government of Canada, S. C. Census in Brief: Ethnic and cultural origins of Canadians: Portrait of a rich heritage. www12.statcan.gc.ca/census-recensement/2016/as-sa/98-200-x/2016016/98-200-x2016016-eng.cfm (2017).

  • Statistics, c=AU; o=Commonwealth of A. ou=Australian B. of. Main Features – Australians overall claim more than 250 ancestries, speak 400 languages at home: Census. www.abs.gov.au/ausstats/abs@.nsf/7d12b0f6763c78caca257061001cc588/5a47791aa683b719ca257306000d536c!OpenDocument (2007).

  • Kong, J. et al. Correction of the disease phenotype in the mouse model of Stargardt disease by lentiviral gene therapy. Gene Ther. 15, 1311–1320 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phase I/II Study of SAR422459 in Patients With Stargardt’s Macular Degeneration – Full Text View – ClinicalTrials.gov. clinicaltrials.gov/ct2/show/NCT01367444.

  • Dyka, F. M., Molday, L. L., Chiodo, V. A., Molday, R. S. & Hauswirth, W. W. Dual ABCA4-AAV vector treatment reduces pathogenic retinal A2E accumulation in a mouse model of autosomal recessive stargardt disease. Hum. Gene Ther. 30, 1361–1370 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McClements, M. E. et al. An AAV dual vector strategy ameliorates the stargardt phenotype in adult Abca4−/− Mice. Hum. Gene Ther. 30, 590–600 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sub-retinal Transplantation of hESC Derived RPE(MA09-hRPE)Cells in Patients With Stargardt’s Macular Dystrophy – Full Text View – ClinicalTrials.gov. clinicaltrials.gov/ct2/show/NCT01345006.

  • Schwartz, S. D. et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: Follow-up of two open-label phase 1/2 studies. Lancet Lond. Engl. 385, 509–516 (2015).

    Article 

    Google Scholar
     

  • Slijkerman, R. W. et al. Antisense oligonucleotide-based splice correction for USH2A-associated retinal degeneration caused by a frequent deep-intronic mutation. Mol. Ther. Nucleic Acids 5, e381 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garanto, A., van der Velde-Visser, S. D., Cremers, F. P. M. & Collin, R. W. J. Antisense oligonucleotide-based splice correction of a deep-intronic mutation in CHM underlying choroideremia. Adv. Exp. Med. Biol. 1074, 83–89 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonifert, T. et al. Antisense oligonucleotide mediated splice correction of a deep intronic mutation in OPA1. Mol. Ther. Nucleic Acids 5, e390 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collin, R. W. et al. Antisense oligonucleotide (AON)-based therapy for leber congenital amaurosis caused by a frequent mutation in CEP290. Mol. Ther. Nucleic Acids 1, e14 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerard, X. et al. AON-mediated exon skipping restores ciliation in fibroblasts harboring the common leber congenital amaurosis CEP290 mutation. Mol. Ther. Nucleic Acids 1, e29 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garanto, A. et al. In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. Hum. Mol. Genet. 25, 2552–2563 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duijkers, L. et al. Antisense oligonucleotide-based splicing correction in individuals with leber congenital amaurosis due to compound heterozygosity for the c.2991+1655A>G mutation in CEP290. Int. J. Mol. Sci. 19, 753 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dulla, K. et al. Splice-modulating oligonucleotide QR-110 restores CEP290 mRNA and function in human c.2991+1655A>G LCA10 models. Mol. Ther. Nucleic Acids 12, 730–740 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cideciyan, A. V. et al. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat. Med. 25, 225–228 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • A Study to Evaluate Efficacy, Safety, Tolerability and Exposure After a Repeat-dose of Sepofarsen (QR-110) in LCA10 (ILLUMINATE) – Full Text View – ClinicalTrials.gov. clinicaltrials.gov/ct2/show/NCT03913143.

  • Stephenson, K. A. J. et al. Target 5000: A standardized all-Ireland pathway for the diagnosis and management of inherited retinal degenerations. Orphanet J. Rare Dis. 16, 200 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fadaie, Z. et al. Whole genome sequencing and in vitro splice assays reveal genetic causes for inherited retinal diseases. Npj Genom. Med. 6, 1–11 (2021).

    Article 

    Google Scholar
     

  • Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinforma. Oxf. Engl. 32, 292–294 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Read more here: Source link