Chen H, Chow CL, Lau D (2022) Deterioration mechanisms and advanced inspection technologies of aluminum windows. Materials 15:354. doi.org/10.3390/ma15010354
Chauhan DK, Yadav V, Vaculík M et al (2021) Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Crit Rev Biotechnol 41:715–730. doi.org/10.1080/07388551.2021.1874282
Liu Q, Zhou L, Liu F et al (2019) Uptake and subcellular distribution of aluminum in a marine diatom. Ecotoxicol Environ Saf 169:85–92. doi.org/10.1016/j.ecoenv.2018.10.095
Shetty R, Vidya CS-N, Prakash NB et al (2021) Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: a review. Sci Total Environ 765:142744. doi.org/10.1016/j.scitotenv.2020.142744
Wang D, He Y, Liang J et al (2013) Distribution and source analysis of aluminum in rivers near Xi’an City, China. Environ Monit Assess 185:1041–1053. doi.org/10.1007/s10661-012-2612-2
Makhdoomi S, Ariafar S, Mirzaei F, Mohammadi M (2023) Aluminum neurotoxicity and autophagy: a mechanistic view. Neurol Res 45:216–225. doi.org/10.1080/01616412.2022.2132727
Ahmed WMS, Ibrahim MA, Helmy NA et al (2022) Amelioration of aluminum-induced hepatic and nephrotoxicity by Premna odorata extract is mediated by lowering MMP9 and TGF-β gene alterations in Wistar rat. Environ Sci Pollut Res 29:72827–72838. doi.org/10.1007/s11356-022-20735-8
Zhou L, He M, Li X et al (2022) Molecular mechanism of aluminum-induced oxidative damage and apoptosis in rat cardiomyocytes. Biol Trace Elem Res 200:308–317. doi.org/10.1007/s12011-021-02646-w
Yuan H-X, Pang Y-F, Wang J-L, Chen W-C (2019) Impacts of aluminum on sperm quality and sperm mitochondria in male rats. Zhonghua Nan Ke Xue 25:579–585
Miska-Schramm A, Kapusta J, Kruczek M (2017) The effect of aluminum exposure on reproductive ability in the bank vole (Myodes glareolus). Biol Trace Elem Res 177:97–106. doi.org/10.1007/s12011-016-0848-3
Cheraghi E, Golkar A, Roshanaei K, Alani B (2017) Aluminium-induced oxidative stress, apoptosis and alterations in testicular tissue and sperm quality in Wistar rats: ameliorative effects of curcumin. Int J fertil Steril 11. doi.org/10.22074/ijfs.2017.4859
da Silva LD, da Silva GL, de Sousa FE et al (2020) Aluminum exposure promotes histopathological and pro-oxidant damage to the prostate and gonads of male and female adult gerbils. Exp Mol Pathol 116:104486. doi.org/10.1016/j.yexmp.2020.104486
Rozanova S, Barkovits K, Nikolov M et al (2021) Quantitative mass spectrometry-based proteomics: an overview. Methods Mol Biol 2228:85–116. doi.org/10.1007/978-1-0716-1024-4_8
McArdle AJ, Menikou S (2021) What is proteomics? Arch Dis Child Educ Pract Ed 106:178–181. doi.org/10.1136/archdischild-2019-317434
Liu Z, Li Y, Sepúlveda MS et al (2021) Development of an adverse outcome pathway for nanoplastic toxicity in Daphnia pulex using proteomics. Sci Total Environ 766:144249. doi.org/10.1016/j.scitotenv.2020.144249
Sun X, Wang Y, Jiang T et al (2021) Nephrotoxicity profile of cadmium revealed by proteomics in mouse kidney. Biol Trace Elem Res 199:1929–1940. doi.org/10.1007/s12011-020-02312-7
Yurchenko VV, Morozov AA, Kiriukhin BA (2022) Proteomics analysis in Japanese Medaka Oryzias latipes exposed to humic acid revealed suppression of innate immunity and coagulation proteins. Biology (Basel) 11:683. doi.org/10.3390/biology11050683
Khan ZN, Sabino IT, de Souza Melo CG et al (2019) Liver proteome of mice with distinct genetic susceptibilities to fluorosis treated with different concentrations of F in the drinking water. Biol Trace Elem Res 187:107–119. doi.org/10.1007/s12011-018-1344-8
Xu F, Liu Y, Zhao H et al (2017) Aluminum chloride caused liver dysfunction and mitochondrial energy metabolism disorder in rat. J Inorg Biochem 174:55–62. doi.org/10.1016/j.jinorgbio.2017.04.016
Doyle TJ, Oudes AJ, Kim KH (2009) Temporal profiling of rat transcriptomes in retinol-replenished vitamin A-deficient testis. Syst Biol Reprod Med 55:145–163. doi.org/10.3109/19396360902896844
Yang Y, Luo J, Yu D et al (2018) Vitamin A promotes Leydig cell differentiation via alcohol dehydrogenase 1. Front Endocrinol 9:644. doi.org/10.3389/fendo.2018.00644
Béziers P, Ducrest A-L, Simon C, Roulin A (2017) Circulating testosterone and feather-gene expression of receptors and metabolic enzymes in relation to melanin-based colouration in the barn owl. Gen Comp Endocrinol 250:36–45. doi.org/10.1016/j.ygcen.2017.04.015
Topo E, Soricelli A, D’Aniello A et al (2009) The role and molecular mechanism of D-aspartic acid in the release and synthesis of LH and testosterone in humans and rats. Reprod Biol Endocrinol 7:120. doi.org/10.1186/1477-7827-7-120
Santillo A, Falvo S, Chieffi P et al (2016) D-aspartate induces proliferative pathways in spermatogonial GC-1 cells: GC-1 CELL PROLIFERATION INDUCED BY D-Asp. J Cell Physiol 231:490–495. doi.org/10.1002/jcp.25095
Morris MB, Ozsoy S, Zada M et al (2020) Selected amino acids promote mouse pre-implantation embryo development in a growth factor-like manner. Front Physiol 11:140. doi.org/10.3389/fphys.2020.00140
Ma C, Mirth CK, Hall MD, Piper MDW (2022) Amino acid quality modifies the quantitative availability of protein for reproduction in Drosophila melanogaster. J Insect Physiol 139:104050. doi.org/10.1016/j.jinsphys.2020.104050
Ommati MM, Heidari R, Zamiri MJ et al (2020) The footprints of oxidative stress and mitochondrial impairment in arsenic trioxide-induced testosterone release suppression in pubertal and mature F1-male Balb/c mice via the downregulation of 3β-HSD, 17β-HSD, and CYP11a expression. Biol Trace Elem Res 195:125–134. doi.org/10.1007/s12011-019-01815-2
Oduwole OO, Peltoketo H, Huhtaniemi IT (2018) Role of follicle-stimulating hormone in spermatogenesis. Front Endocrinol (Lausanne) 9:763. doi.org/10.3389/fendo.2018.00763
Ozcan Yildirim S, Colakoglu N, Ozer Kaya S (2022) Protective effects of L -arginine against aluminium chloride-induced testicular damage in rats. Andrologia 54. doi.org/10.1111/and.14569
Gao D-D, Lan C-F, Cao X-N et al (2022) G protein-coupled estrogen receptor promotes acrosome reaction via regulation of Ca2+ signaling in mouse sperm†. Biol Reprod 107:1026–1034. doi.org/10.1093/biolre/ioac136
Sato T, Arimura T, Murata K et al (2021) Differences of extracellular cues and Ca2+ permeable channels in the signaling path differences ways for inducing amphibian sperm motility. Zoolog Sci 38:343–351. doi.org/10.2108/zs200159
Zhou F, Du G, Xie J et al (2020) RyRs mediate lead-induced neurodegenerative disorders through calcium signaling pathways. Sci Total Environ 701:134901. doi.org/10.1016/j.scitotenv.2019.134901
Ren T, Tang Y, Wang M et al (2020) Triptolide induces apoptosis through the calcium/calmodulin-dependent protein kinase kinaseβ/AMP-activated protein kinase signaling pathway in non-small cell lung cancer cells. Oncol Rep. doi.org/10.3892/or.2020.7763
Ham J, Lim W, You S, Song G (2020) Butylated hydroxyanisole induces testicular dysfunction in mouse testis cells by dysregulating calcium homeostasis and stimulating endoplasmic reticulum stress. Sci Total Environ 702:134775. doi.org/10.1016/j.scitotenv.2019.134775
Li Y, Jin L, Li Y et al (2022) Lysophosphatidic acid improves human sperm motility by enhancing glycolysis and activating L-type calcium channels. Front Endocrinol (Lausanne) 13:896558. doi.org/10.3389/fendo.2022.896558
Liu X, Teng Z, Wang Z et al (2022) Expressions of HSPA1L and HSPA9 are associated with poor sperm quality of low-motility spermatozoa in fertile men. Andrologia 54:e14321. doi.org/10.1111/and.14321
Park Y-J, Pang M-G (2021) Mitochondrial functionality in male fertility: from spermatogenesis to fertilization. Antioxidants (Basel) 10:98. doi.org/10.3390/antiox10010098
Tang W, Xiao Y, Long Y et al (2021) Sodium fluoride causes oxidative damage to silkworm (Bombyx mori) testis by affecting the oxidative phosphorylation pathway. Ecotoxicol Environ Saf 218:112229. doi.org/10.1016/j.ecoenv.2021.112229
da Silva J, Gonçalves RV, de Melo FCSA et al (2021) Cadmium Exposure and testis susceptibility: a systematic review in murine models. Biol Trace Elem Res 199:2663–2676. doi.org/10.1007/s12011-020-02389-0
Shih H-J, Chang C-Y, Huang I-T et al (2021) Testicular torsion-detorsion causes dysfunction of mitochondrial oxidative phosphorylation. Andrology 9:1902–1910. doi.org/10.1111/andr.13068
Dibley MG, Formosa LE, Lyu B et al (2020) The mitochondrial acyl-carrier protein interaction network highlights important roles for LYRM family members in complex I and mitoribosome assembly. Mol Cell Proteomics 19:65–77. doi.org/10.1074/mcp.RA119.001784
Zhang R, Hou T, Cheng H, Wang X (2019) NDUFAB1 protects against obesity and insulin resistance by enhancing mitochondrial metabolism. FASEB J 33:13310–13322. doi.org/10.1096/fj.201901117RR
Hou T, Zhang R, Jian C et al (2019) NDUFAB1 confers cardio-protection by enhancing mitochondrial bioenergetics through coordination of respiratory complex and supercomplex assembly. Cell Res 29:754–766. doi.org/10.1038/s41422-019-0208-x
Chakraborty B, Bhakta S, Sengupta J (2016) Mechanistic insight into the reactivation of BCAII enzyme from denatured and molten globule states by eukaryotic ribosomes and domain V rRNAs. PLoS One 11:e0153928. doi.org/10.1371/journal.pone.0153928
Branco AT, Lemos B (2014) High intake of dietary sugar enhances bisphenol A (BPA) disruption and reveals ribosome-mediated pathways of toxicity. Genetics 197:147–157. doi.org/10.1534/genetics.114.163170
Shen X, Yin L, Pan X et al (2020) Porcine epidemic diarrhea virus infection blocks cell cycle and induces apoptosis in pig intestinal epithelial cells. Microb Pathog 147:104378. doi.org/10.1016/j.micpath.2020.104378
Huang G, Li H, Zhang H (2020) Abnormal expression of mitochondrial ribosomal proteins and their encoding genes with cell apoptosis and diseases. IJMS 21:8879. doi.org/10.3390/ijms21228879
Guan X, Zhang H, Qin H et al (2020) CRISPR/Cas9-mediated whole genomic wide knockout screening identifies mitochondrial ribosomal proteins involving in oxygen-glucose deprivation/reperfusion resistance. J Cell Mol Med 24:9313–9322. doi.org/10.1111/jcmm.15580
Zhou Q, Hou Z, Zuo S et al (2019) LUCAT1 promotes colorectal cancer tumorigenesis by targeting the ribosomal protein L40- MDM 2-p53 pathway through binding with UBA 52. Cancer Sci 110:1194–1207. doi.org/10.1111/cas.13951
Carracedo S, Briand-Amirat L, Dordas-Perpinyà M et al (2022) ProAKAP4 protein marker: towards a functional approach to male fertility. Anim Reprod Sci 247:107074. doi.org/10.1016/j.anireprosci.2022.107074
Fang X, Huang L-L, Xu J et al (2019) Proteomics and single-cell RNA analysis of Akap4-knockout mice model confirm indispensable role of Akap4 in spermatogenesis. Dev Biol 454:118–127. doi.org/10.1016/j.ydbio.2019.06.017
Zhao W, Li Z, Ping P et al (2018) Outer dense fibers stabilize the axoneme to maintain sperm motility. J Cell Mol Med 22:1755–1768. doi.org/10.1111/jcmm.13457
Hoyer-Fender S (2022) Development of the connecting piece in ODF1-deficient mouse spermatids. IJMS 23:10280. doi.org/10.3390/ijms231810280
Sarkar S, Yadav S, Mehta P et al (2022) Histone methylation regulates gene expression in the round spermatids to set the RNA payloads of sperm. Reprod Sci 29:857–882. doi.org/10.1007/s43032-021-00837-3
Paclik D, Danese S, Berndt U et al (2008) Galectin-4 controls intestinal inflammation by selective regulation of peripheral and mucosal T cell apoptosis and cell cycle. PLoS One 3:e2629. doi.org/10.1371/journal.pone.0002629
Cao Z-Q, Guo X-L (2016) The role of galectin-4 in physiology and diseases. Protein Cell 7:314–324. doi.org/10.1007/s13238-016-0262-9
Read more here: Source link