Candidatus Nemesobacterales is a sponge-specific clade of the candidate phylum Desulfobacterota adapted to a symbiotic lifestyle

  • Bond PL, Hugenholtz P, Keller J, Blackall LL. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol. 1995;61:1910–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Z, Guo F, Liu L, Zhang T. Evidence of carbon fixation pathway in a bacterium from candidate phylum SBR1093 revealed with genomic analysis. PLoS ONE. 2014;9:e109571.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol. 2016;18:159–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol. 2020;70:5972–6016.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Konstantinidis KT, Rossello-Mora R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hugenholtz P, Chuvochina M, Oren A, Parks DH, Soo RM. Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME J. 2021;15:1879–92.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graham ED, Tully BJ. Marine Dadabacteria exhibit genome streamlining and phototrophy-driven niche partitioning. ISME J. 2021;15:1248–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas T, Moitinho-Silva L, Lurgi M, Bjork JR, Easson C, Astudillo-Garcia C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome. 2018;6:46.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webster NS, Taylor MW. Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol. 2012;14:335–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Podell S, Blanton JM, Neu A, Agarwal V, Biggs JS, Moore BS, et al. Pangenomic comparison of globally distributed Poribacteria associated with sponge hosts and marine particles. ISME J. 2019;13:468–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lackner G, Peters EE, Helfrich EJ, Piel J. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc Natl Acad Sci USA. 2017;114:E347–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slaby BM, Hackl T, Horn H, Bayer K, Hentschel U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J. 2017;11:2465–78.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diez-Vives C, Moitinho-Silva L, Nielsen S, Reynolds D, Thomas T. Expression of eukaryotic-like protein in the microbiome of sponges. Mol Ecol. 2017;26:1432–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Astudillo-Garcia C, Slaby BM, Waite DW, Bayer K, Hentschel U, Taylor MW. Phylogeny and genomics of SAUL, an enigmatic bacterial lineage frequently associated with marine sponges. Environ Microbiol. 2018;20:561–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sizikov S, Burgsdorf I, Handley KM, Lahyani M, Haber M, Steindler L. Characterization of sponge-associated Verrucomicrobia: microcompartment-based sugar utilization and enhanced toxin-antitoxin modules as features of host-associated Opitutales. Environ Microbiol. 2020;22:4669–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Engelberts JP, Robbins SJ, de Goeij JM, Aranda M, Bell SC, Webster NS. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J. 2020;14:1100–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robbins SJ, Song W, Engelberts JP, Glasl B, Slaby BM, Boyd J, et al. A genomic view of the microbiome of coral reef demosponges. ISME J. 2021;15:1641–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor JA, Palladino G, Wemheuer B, Steinert G, Sipkema D, Williams TJ, et al. Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts. ISME J. 2021;15:503–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaib De Mares M, Jimenez DJ, Palladino G, Gutleben J, Lebrun LA, Muller EEL, et al. Expressed protein profile of a Tectomicrobium and other microbial symbionts in the marine sponge Aplysina aerophoba as evidenced by metaproteomics. Sci Rep. 2018;8:11795.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steffen K, Indraningrat AAG, Erngren I, Haglöf J, Becking LE, Smidt H, et al. Oceanographic setting influences the prokaryotic community and metabolome in deep-sea sponges. Sci Rep. 2022;12:3356.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loureiro C, Galani A, Gavriilidou A, Chaib de Mares M, van der Oost J, Medema MH, et al. Comparative metagenomic analysis of biosynthetic diversity across sponge microbiomes highlights metabolic novelty, conservation, and diversification. mSystems. 2022;7:e0035722.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters EE, Cahn JKB, Lotti A, Gavriilidou A, Steffens UAE., Loureiro C, et al. Distribution and diversity of ‘Tectomicrobia’, a deep-branching uncultivated bacterial lineage harboring rich producers of bioactive metabolites. ISME Commun. 2023;3:50.

  • Roume H, Heintz-Buschart A, Muller EE, Wilmes P. Sequential isolation of metabolites, RNA, DNA, and proteins from the same unique sample. Methods Enzymol. 2013;531:219–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andrews S FASTQC: a quality control tool for high throughput sequence data. 2010. www.bioinformatics.babraham.ac.uk/projects/fastqc.

  • Bushnell B, Rood J, Singer E. BBMerge – Accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12:e0185056.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:1–13.

    Article 

    Google Scholar
     

  • Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu YW, Tang YH, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome. 2014;2:26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rinke C, Chuvochina M, Mussig AJ, Chaumeil PA, Davin AA, Waite DW, et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol. 2021;6:946–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chuvochina M, Rinke C, Parks DH, Rappe MS, Tyson GW, Yilmaz P, et al. The importance of designating type material for uncultured taxa. Syst Appl Microbiol. 2019;42:15–21.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou Z, Tran PQ, Kieft K, Anantharaman K. Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation. ISME J. 2020;14:2060–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen IA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W, Schleifer KH, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.

  • RStudio Team. RStudio: integrated development of R. Boston, MA: RStudio, PBC; 2020.

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package. R package version 2.5-2. 2018. CRAN.R-project.org/package=vegan.

  • Wickham H. ggplot2: Elegant graphics for data analysis. Verlag New York: Springer; 2016.

  • Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eddy SR. HMMER User’s guide: biological sequence analysis using profile hidden Markov models. 3.2.1 ed2018.

  • Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49:W29–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pruesse E, Peplies J, Glockner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yilmaz LS, Parnerkar S, Noguera DR. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ Microbiol. 2011;77:1118–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Radax R, Rattei T, Lanzen A, Bayer C, Rapp HT, Urich T, et al. Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ Microbiol. 2012;14:1308–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schimak MP, Kleiner M, Wetzel S, Liebeke M, Dubilier N, Fuchs BM. MiL-FISH: multilabeled oligonucleotides for fluorescence in situ hybridization improve visualization of bacterial cells. Appl Environ Microbiol. 2016;82:62–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitman WB. Genome sequences as the type material for taxonomic descriptions of prokaryotes. Syst Appl Microbiol. 2015;38:217–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koedooder C, Guéneuguès A, Van Geersdaële R, Vergé V, Bouget F-Y, Labreuche Y, et al. The role of the glyoxylate shunt in the acclimation to iron limitation in marine heterotrophic bacteria. Front Mar Sci. 2018;5:435.

  • Bayer K, Jahn MT, Slaby BM, Moitinho-Silva L, Hentschel U. Marine sponges as Chloroflexi hot spots: Genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems. 2018;3:e00150–18.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor MW, Hill RT, Piel J, Thacker RW, Hentschel U. Soaking it up: the complex lives of marine sponges and their microbial associates. ISME J. 2007;1:187–90.

    Article 
    PubMed 

    Google Scholar
     

  • Thomas T, Rusch D, DeMaere MZ, Yung PY, Lewis M, Halpern A, et al. Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J. 2010;4:1557–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, et al. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci USA. 2012;109:E1878–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webster NS, Thomas T. The sponge hologenome. MBio. 2016;7:e00135–16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamke J, Sczyrba A, Ivanova N, Schwientek P, Rinke C, Mavromatis K, et al. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J 2013;7:2287–300.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bennke CM, Kruger K, Kappelmann L, Huang S, Gobet A, Schuler M, et al. Polysaccharide utilisation loci of Bacteroidetes from two contrasting open ocean sites in the North Atlantic. Environ Microbiol. 2016;18:4456–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gavriilidou A, Gutleben J, Versluis D, Forgiarini F, van Passel MWJ, Ingham CJ, et al. Comparative genomic analysis of Flavobacteriaceae: insights into carbohydrate metabolism, gliding motility and secondary metabolite biosynthesis. BMC Genomics. 2020;21:569.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haber M, Burgsdorf I, Handley KM, Rubin-Blum M, Steindler L. Genomic insights into the lifestyles of Thaumarchaeota inside sponges. Front Microbiol. 2020;11:622824.

    Article 
    PubMed 

    Google Scholar
     

  • Munroe S, Sandoval K, Martens DE, Sipkema D, Pomponi SA. Genetic algorithm as an optimization tool for the development of sponge cell culture media. Vitr Cell Dev Biol Anim. 2019;55:149–58.

    Article 

    Google Scholar
     

  • Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Websterf NS, et al. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci USA. 2012;109:1879–87.

    Article 

    Google Scholar
     

  • Horn H, Slaby BM, Jahn MT, Bayer K, Moitinho-Silva L, Forster F, et al. An enrichment of CRISPR and other defense-related features in marine aponge-associated microbial metagenomes. Front Microbiol. 2016;7:1751.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reynolds D, Thomas T. Evolution and function of eukaryotic-like proteins from sponge symbionts. Mol Ecol. 2016;25:5242–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno-Pino M, Cristi A, Gillooly JF, Trefault N. Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach. Sci Rep. 2020;10:645.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makarova KS, Wolf YI, Koonin EV. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res. 2013;41:4360–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harms A, Brodersen DE, Mitarai N, Gerdes K. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol Cell. 2018;70:768–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen MT, Liu M, Thomas T. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol Ecol. 2014;23:1635–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fiore CL, Labrie M, Jarett JK, Lesser MP. Transcriptional activity of the giant barrel sponge, Xestospongia muta Holobiont: molecular evidence for metabolic interchange. Front Microbiol. 2015;6:364.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cerveny L, Straskova A, Dankova V, Hartlova A, Ceckova M, Staud F, et al. Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infect Immun. 2013;81:629–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piel J. Metabolites from symbiotic bacteria. Nat Prod Rep. 2009;26:338–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Indraningrat AA, Smidt H, Sipkema D. Bioprospecting sponge-associated microbes for antimicrobial compounds. Mar Drugs. 2016;14:87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brinkmann CM, Marker A, Ipek Kurtböke D. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity. 2017;9:40.

  • Karimi E, Ramos M, Goncalves JMS, Xavier JR, Reis MP, Costa R. Comparative metagenomics reveals the distinctive adaptive features of the Spongia officinalis endosymbiotic consortium. Front Microbiol 2017;8:2499.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Konstantinou D, Mavrogonatou E, Zervou SK, Giannogonas P, Gkelis S. Bioprospecting sponge-associated marine Cyanobacteria to produce bioactive compounds. Toxins. 2020;12:73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavriilidou A, Mackenzie TA, Sanchez P, Tormo JR, Ingham C, Smidt H, et al. Bioactivity screening and gene-trait matching across marine sponge-associated bacteria. Mar Drugs. 2021;19:75.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA. 2004;101:16222–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson SL, Christenson JK, Wackett LP. Biosynthesis and chemical diversity of β-lactone natural products. Nat Prod Rep. 2019;20:458–75.

    Article 

    Google Scholar
     

  • Kirchberger PC, Schmidt ML, Ochman H. The ingenuity of bacterial genomes. Ann Rev Microbiol 2020;74:815–34.

    Article 
    CAS 

    Google Scholar
     

  • Maldonado M. Intergenerational transmission of symbiotic bacteria in oviparous and viviparous demosponges, with emphasis on intracytoplasmically-compartmented bacterial types. J Mar Biol Assoc. 2007;87:1701–13.

    Article 

    Google Scholar
     

  • Vacelet J, Donadey C. Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol. 1977;30:301–14.

    Article 

    Google Scholar
     

  • Moran NA, Wernegreen JJ. Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol Evol. 2000;15:321–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Usher KM, Kuo J, Fromont J, Sutton DC. Vertical transmission of cyanobacterial symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Hydrobiologia. 2001;461:9–13.

    Article 

    Google Scholar
     

  • Diez-Vives C, Koutsouveli V, Conejero M, Riesgo A. Global patterns in symbiont selection and transmission strategies in sponges. Front Ecol Evol. 2022;10:1015592.

  • Carrier TJ, Maldonado M, Schmittmann L, Pita L, Bosch TCG, Hentschel U. Symbiont transmission in marine sponges: reproduction, development, and metamorphosis. BMC Biol. 2022;20:100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Read more here: Source link