Molecular basis for maternal inheritance of human mitochondrial DNA

  • Ankel-Simons, F. & Cummins, J. M. Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc. Natl Acad. Sci. USA 93, 13859–13863 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallace, D. C. Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu. Rev. Biochem. 76, 781–821 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sutovsky, P. et al. Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol. Reprod. 63, 582–590 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato, M. & Sato, K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–1144 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, S. M. et al. Unique insights into maternal mitochondrial inheritance in mice. Proc. Natl Acad. Sci. USA 110, 13038–13043 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boudoures, A. L. et al. Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy. Dev. Biol. 426, 126–138 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Birky, C. W. Jr. Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc. Natl Acad. Sci. USA 92, 11331–11338 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoekstra, R. F. Evolutionary origin and consequences of uniparental mitochondrial inheritance. Hum. Reprod. 15, 102–111 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Havird, J. C. et al. Selfish mitonuclear conflict. Curr. Biol. 29, R496–R511 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharpley, M. S. et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151, 333–343 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeLuca, S. Z. & O’Farrell, P. H. Barriers to male transmission of mitochondrial DNA in sperm development. Dev. Cell 22, 660–668 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rantanen, A. & Larsson, N. G. Regulation of mitochondrial DNA copy number during spermatogenesis. Hum. Reprod. 15, 86–91 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Manfredi, G., Thyagarajan, D., Papadopoulou, L. C., Pallotti, F. & Schon, E. A. The fate of human sperm-derived mtDNA in somatic cells. Am. J. Hum. Genet. 61, 953–960 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diez-Sanchez, C. et al. Mitochondrial DNA content of human spermatozoa. Biol. Reprod. 68, 180–185 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boguenet, M. et al. Mitochondrial DNA content reduction in the most fertile spermatozoa is accompanied by increased mitochondrial DNA rearrangement. Hum. Reprod. 37, 669–679 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Podlesniy, P. & Trullas, R. Absolute measurement of gene transcripts with Selfie-digital PCR. Sci. Rep. 7, 8328 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. Maternal inheritance of human mitochondrial DNA. Proc. Natl Acad. Sci. USA 77, 6715–6719 (1980).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, G. et al. In-depth proteomic analysis of the human sperm reveals complex protein compositions. J. Proteom. 79, 114–122 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Baker, M. A. et al. Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC–MS/MS analysis. Proteom. Clin. Appl. 1, 524–532 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Castillo, J. et al. Proteomic changes in human sperm during sequential in vitro capacitation and acrosome reaction. Front. Cell Dev. Biol. 7, 295 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsson, N. G., Oldfors, A., Garman, J. D., Barsh, G. S. & Clayton, D. A. Down-regulation of mitochondrial transcription factor A during spermatogenesis in humans. Hum. Mol. Genet. 6, 185–191 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larsson, N. G. et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ekstrand, M. I. et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum. Mol. Genet. 13, 935–944 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Otten, A. B. C. et al. Tfam knockdown results in reduction of mtDNA copy number, OXPHOS deficiency and abnormalities in Zebrafish embryos. Front. Cell Dev. Biol. 8, 381 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsushima, Y. et al. Functional domains of chicken mitochondrial transcription factor A for the maintenance of mitochondrial DNA copy number in lymphoma cell line DT40. J. Biol. Chem. 278, 31149–31158 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanki, T. et al. Architectural role of mitochondrial transcription factor A in maintenance of human mitochondrial DNA. Mol. Cell. Biol. 24, 9823–9834 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. J., Hsu, T., Lin, H. L. & Fu, C. Y. Modulation of mitochondrial nucleoid structure during aging and by mtDNA content in Drosophila. Biol. Open 10, bio058553 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saint-Georges, Y. et al. Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein Puf3p in mRNA localization. PLoS ONE 3, e2293 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kosugi, S., Hasebe, M., Tomita, M. & Yanagawa, H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl Acad. Sci. USA 106, 10171–10176 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, D., Brinkworth, M. & Iles, D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139, 287–301 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Urizar-Arenaza, I. et al. Phosphoproteomic and functional analyses reveal sperm-specific protein changes downstream of Kappa opioid receptor in human spermatozoa. Mol. Cell Proteom. 18, S118–S131 (2019).

    Article 

    Google Scholar
     

  • Wiedemann, N. & Pfanner, N. Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86, 685–714 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J., O’Neill, R. C., Park, M. W., Gravel, M. & Braun, P. E. Mitochondrial localization of CNP2 is regulated by phosphorylation of the N-terminal targeting signal by PKC: implications of a mitochondrial function for CNP2 in glial and non-glial cells. Mol. Cell Neurosci. 31, 446–462 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Law, Y. S. et al. Phosphorylation and dephosphorylation of the presequence of precursor MULTIPLE ORGANELLAR RNA EDITING FACTOR3 during import into mitochondria from Arabidopsis. Plant Physiol. 169, 1344–1355 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niemi, N. M. et al. Pptc7 is an essential phosphatase for promoting mammalian mitochondrial metabolism and biogenesis. Nat. Commun. 10, 3197 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutovsky, P. et al. Ubiquitin tag for sperm mitochondria. Nature 402, 371–372 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, K. et al. Hepatic mitochondrial defects in a nonalcoholic fatty liver disease mouse model are associated with increased degradation of oxidative phosphorylation subunits. Mol. Cell Proteom. 17, 2371–2386 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Karunadharma, P. P. et al. Respiratory chain protein turnover rates in mice are highly heterogeneous but strikingly conserved across tissues, ages, and treatments. FASEB J. 29, 3582–3592 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piomboni, P., Focarelli, R., Stendardi, A., Ferramosca, A. & Zara, V. The role of mitochondria in energy production for human sperm motility. Int. J. Androl. 35, 109–124 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruiz-Pesini, E. et al. Correlation of sperm motility with mitochondrial enzymatic activities. Clin. Chem. 44, 1616–1620 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wolf, D. P., Mitalipov, P. A. & Mitalipov, S. M. Principles of and strategies for germline gene therapy. Nat. Med. 25, 890–897 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, H. et al. Germline transmission of donor, maternal and paternal mtDNA in primates. Hum. Reprod. 36, 493–505 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Podlesniy, P. et al. Accumulation of mitochondrial 7S DNA in idiopathic and LRRK2 associated Parkinson’s disease. EBioMedicine 48, 554–567 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, H. et al. Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature 524, 234–238 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seo, J. H. et al. Syntaphilin ubiquitination regulates mitochondrial dynamics and tumor cell movements. Cancer Res. 78, 4215–4228 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, Q. et al. Proximity labeling identifies a repertoire of site-specific R-loop modulators. Nat. Commun. 13, 53 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chi, H. et al. Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat. Biotechnol. doi.org/10.1038/nbt.4236 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Read more here: Source link