A Simple Overview for Proteins Molecular Dynamics Simulations Using GROMACS

  • About Gromacs – Gromacs. s.d. Consulté le 5 mai 2023. www.gromacs.org/About_Gromacs

  • Baker, D., Sali, A.: Protein structure prediction and structural genomics. Science 294(5540), 93–96 (2001). doi.org/10.1126/science.1065659

  • Beckstein, O., et al.: Ion channel gating: insights via molecular simulations. FEBS Lett. 555(1), 85–90 (2003). doi.org/10.1016/s0014-5793(03)01151-7

    CrossRef 

    Google Scholar
     

  • Bowman, A.L., Ridder, L., Rietjens, I.M.C.M., Vervoort, J., Mulholland, A.J.: Molecular determinants of xenobiotic metabolism: QM/MM simulation of the conversion of 1-chloro-2,4-dinitrobenzene catalyzed by M1–1 glutathione S-transferase. Biochemistry 46(21), 6353–6363 (2007). doi.org/10.1021/bi0622827

    CrossRef 

    Google Scholar
     

  • Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2), 187–217 (1983). doi.org/10.1002/jcc.540040211

    CrossRef 

    Google Scholar
     

  • Brünger, A.T.: X-ray crystallography and NMR reveal complementary views of structure and dynamics. Nat. Struct. Biol. 4(Suppl), 862–865 (1997)


    Google Scholar
     

  • Brünger, A.T., Nilges, M.: Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMR spectroscopy. Q. Rev. Biophys. 26(1), 49–125 (1993). doi.org/10.1017/S0033583500003966

  • Charlier, L., Nespoulous, C., Fiorucci, S., Antonczak, S., Golebiowski, J.: Binding free energy prediction in strongly hydrophobic biomolecular systems. Phys. Chem. Chem. Phys. 9(43), 5761–5771 (2007). doi.org/10.1039/b710186d

    CrossRef 

    Google Scholar
     

  • Deng, Y., Roux, B.: Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. J. Chem. Phys. 128(11), 115103 (2008). doi.org/10.1063/1.2842080

    CrossRef 

    Google Scholar
     

  • Elcock, A.H.: Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLoS Comput. Biol. 2(7) (2006). doi.org/10.1371/journal.pcbi.0020098

  • Garcia-Viloca, M., Gao, J., Karplus, M., Truhlar, D.G.: How enzymes work: analysis by modern rate theory and computer simulations. Science 303(5655), 186–195 (2004). doi.org/10.1126/science.1088172

    CrossRef 

    Google Scholar
     

  • Güntert, P.: Structure calculation of biological macromolecules from NMR data. Q. Rev. Biophys. 31(2), 145–237 (1998). doi.org/10.1017/S0033583598003436

  • Johansson, A.C.V., Lindahl, E.: Position-resolved free energy of solvation for amino acids in lipid membranes from molecular dynamics simulations. Proteins 70(4), 1332–1344 (2008). doi.org/10.1002/prot.21629

    CrossRef 

    Google Scholar
     

  • van der Kamp, M.W., Shaw, K.E., Woods, C.J., Mulholland, A.J.: Biomolecular simulation and modelling: status, progress and prospects. J. Royal Soc. Interface 5(suppl_3), 173–190 (2008). doi.org/10.1098/rsif.2008.0105.focus

  • Kay, L.E.: NMR methods for the study of protein structure and dynamics. Biochem. Cell Biol. = Biochimie Et Biologie Cellulaire 75(1), 1–15 (1997). doi.org/10.1139/o97-023

  • Kettani, A., Mikou, A.: La Modélisation moléculaire, un outil de laboratoire précieux. Les technologies de laboratoire 3(9) (2008). revues.imist.ma/index.php?journal=technolab&page=article&op=view&path%5B%5D=345

  • Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J.: Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discovery 3(11), 935–949 (2004). doi.org/10.1038/nrd1549

    CrossRef 

    Google Scholar
     

  • Lewars, E.G.: Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 2nd edn. Springer, Dordrecht (2011). doi.org/10.1007/978-90-481-3862-3

  • Liu, H., Warshel, A.: The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies. Biochemistry 46(20), 6011–6025 (2007). doi.org/10.1021/bi700201w

    CrossRef 

    Google Scholar
     

  • McGuffee, S.R., Elcock, A.H.: Atomically detailed simulations of concentrated protein solutions: the effects of salt, PH, point mutations, and protein concentration in simulations of 1000-molecule systems. J. Am. Chem. Soc. 128(37), 12098–12110 (2006). doi.org/10.1021/ja0614058

    CrossRef 

    Google Scholar
     

  • Meunier, M.: Guest editorial: industrial applications of molecular simulation. Mol. Simul. 32(2), 71–72 (2006). doi.org/10.1080/08927020600710900

    CrossRef 

    Google Scholar
     

  • Molecular Modelling: Principles and Applications, 2nd edn. s.d. Consulté le 13 juillet 2020. /content/one-dot-com/one-dot-com/us/en/higher-education/program.html


    Google Scholar
     

  • Mulholland, A.J.: Computational enzymology: modelling the mechanisms of biological catalysts. Biochem. Soc. Trans. 36(Pt 1), 22–26 (2008). doi.org/10.1042/BST0360022

    CrossRef 

    Google Scholar
     

  • Nilges, M.: Structure calculation from NMR data. Curr. Opin. Struct. Biol. 6(5), 617–623 (1996). doi.org/10.1016/S0959-440X(96)80027-3

    CrossRef 

    Google Scholar
     

  • Nogales, E.: The development of cryo-EM into a mainstream structural biology technique. Nat. Methods 13(1), 24–27 (2016). doi.org/10.1038/nmeth.3694

    CrossRef 
    MathSciNet 

    Google Scholar
     

  • Pang, J., Jingzhi, P., Gao, J., Truhlar, D.G., Allemann, R.K.: Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions. J. Am. Chem. Soc. 128(24), 8015–8023 (2006). doi.org/10.1021/ja061585l

    CrossRef 

    Google Scholar
     

  • Parker, M.W.: Protein structure from X-ray diffraction. J. Biol. Phys. 29(4), 341–362 (2003). doi.org/10.1023/A:1027310719146

    CrossRef 

    Google Scholar
     

  • Patny, A., Desai, P.V., Avery, M.A.: Homology modeling of G- protein-coupled receptors and implications in drug design. Curr. Med. Chem. 13(14), 1667–1691 (2006). doi.org/10.2174/092986706777442002

    CrossRef 

    Google Scholar
     

  • Ritchie, D.W.: Recent progress and future directions in protein-protein docking. Curr. Protein Pept. Sci. 9(1), 1–15 (2008). doi.org/10.2174/138920308783565741

    CrossRef 

    Google Scholar
     

  • Rost, B., Schneider, R., Sander, C.: Protein fold recognition by prediction-based threading. J. Mol. Biol. 270(3), 471–480 (1997). doi.org/10.1006/jmbi.1997.1101

    CrossRef 

    Google Scholar
     

  • Saxena, A., Wong, D., Diraviyam, K., Sept, D.: Chapter 12 – the basic concepts of molecular modeling. In: Johnson, M.L., Brand, L. (eds.) Methods in Enzymology, vol. 467, pp. 307–334. Computer Methods Part B. Academic Press (2009). doi.org/10.1016/S0076-6879(09)67012-9

  • Vanommeslaeghe, K., Guvench, O., MacKerell, A.D.: Molecular mechanics. Curr. Pharm. Des. 20(20), 3281–3292 (2014). doi.org/10.2174/13816128113199990600

    CrossRef 

    Google Scholar
     

  • Warshel, A., Sharma, P.K., Kato, M., Xiang, Y., Liu, H., Olsson, M.H.M.: Electrostatic basis for enzyme catalysis. Chem. Rev. 106(8), 3210–3235 (2006). doi.org/10.1021/cr0503106

    CrossRef 

    Google Scholar
     

  • Weiner, P.K., Kollman, P.A.: AMBER: assisted model building with energy refinement. a general program for modeling molecules and their interactions. J. Comput. Chem. 2(3), 287–303 (1981). doi.org/10.1002/jcc.540020311

  • Read more here: Source link